A361763
Expansion of g.f. A(x) satisfying A(x)^3 = A( x^3/(1 - 3*x)^3 ).
Original entry on oeis.org
1, 3, 9, 28, 93, 333, 1271, 5064, 20673, 85460, 355659, 1486719, 6238608, 26278281, 111114558, 471608944, 2008906581, 8586410085, 36816550550, 158332335279, 682843960665, 2952865525730, 12802463157570, 55646477022330, 242465061290160, 1059022767175173, 4636452916770489
Offset: 1
G.f.: A(x) = x + 3*x^2 + 9*x^3 + 28*x^4 + 93*x^5 + 333*x^6 + 1271*x^7 + 5064*x^8 + 20673*x^9 + 85460*x^10 + 355659*x^11 + 1486719*x^12 + ...
where
A( x^3/(1 - 3*x)^3 ) = x^3 + 9*x^4 + 54*x^5 + 273*x^6 + 1269*x^7 + 5670*x^8 + 24957*x^9 + 109593*x^10 + 482598*x^11 + 2133082*x^12 + ...
which equals A(x)^3.
RELATED SERIES.
Notice that the following cube root is an integer series
( A(x)/x )^(1/3) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 197*x^6 + 779*x^7 + 3135*x^8 + 12709*x^9 + 51757*x^10 + ... + A361762(n)*x^n + ...
Also, let B(x) satisfy A(x/B(x)) = x and B(A(x)) = A(x)/x,
then B(x) = x/Series_Reversion(A(x)) is the g.f. of A107092,
B(x) = 1 + 3*x + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18 + 55*x^21 - 142*x^24 + 376*x^27 - 1011*x^30 + ...
such that B(x)^3 = B(x^3) + 3*x,
as shown by the series
B(x)^(1/3) = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 22*x^6 + 55*x^7 - 142*x^8 + 376*x^9 - 1011*x^10 + ...
SPECIFIC VALUES.
A(1/5) = A(1/8)^(1/3) = 0.586384210523490911367880492498...
A(1/5) = (1/5) * (1 - 3/5)^(-1) * (1 - 3/8)^(-1/3) * (1 - 3/125)^(-1/9) * (1 - 3/1815848)^(-1/27) * ...
A(1/6) = A(1/27)^(1/3) = 0.346688997573685318336777346240...
A(1/6) = (1/6) * (1 - 3/6)^(-1) * (1 - 3/27)^(-1/3) * (1 - 3/13824)^(-1/9) * (1 - 3/2640087986661)^(-1/27) * ...
A(1/9) = A(1/216)^(1/3) = 0.16744549995321182031691216552466...
A(1/12) = A(1/729)^(1/3) = 0.11126394649161862248626102306202...
-
{a(n) = my(A=x); for(i=1, #binary(n+1), A = ( subst(A, x, x^3/(1 - 3*x +x*O(x^n))^3 ) )^(1/3) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A370440
Expansion of g.f. A(x) satisfying A(x) = A( x^3 + 3*x^2*A(x)^2 )^(1/3), with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 15, 30, 55, 113, 274, 683, 1596, 3547, 7990, 18968, 46530, 113663, 273392, 656421, 1598270, 3951520, 9827565, 24411649, 60599823, 150978177, 378293690, 951828992, 2398983638, 6051008950, 15284145261, 38690832455, 98154905623, 249390491237, 634296702273
Offset: 1
G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 6*x^6 + 15*x^7 + 30*x^8 + 55*x^9 + 113*x^10 + 274*x^11 + 683*x^12 + 1596*x^13 + 3547*x^14 + 7990*x^15 + ...
where A(x)^3 = A( x^3 + 3*x^2*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 18*x^7 + 47*x^8 + 106*x^9 + 216*x^10 + 450*x^11 + 1040*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 18*x^7 + 42*x^8 + 109*x^9 + 264*x^10 + 585*x^11 + 1270*x^12 + ...
Let B(x) denote the series reversion of A(x), A(B(x)) = x,
B(x) = x - x^2 + x^3 - x^4 + x^6 - x^7 + 2*x^9 - 3*x^10 + 6*x^12 - 9*x^13 + 20*x^15 - 30*x^16 + 71*x^18 - 110*x^19 + 267*x^21 - 419*x^22 + 1041*x^24 - 1648*x^25 + 4168*x^27 - 6652*x^28 + 17047*x^30 + ...
then B(x^3) = B(x)^3 + 3*x^2*B(x)^2, where
B(x)^2 = x^2 - 2*x^3 + 3*x^4 - 4*x^5 + 3*x^6 - 3*x^8 + 4*x^9 - 8*x^11 + 11*x^12 - 23*x^14 + 34*x^15 + ...
B(x)^3 = x^3 - 3*x^4 + 6*x^5 - 10*x^6 + 12*x^7 - 9*x^8 + x^9 + 9*x^10 - 12*x^11 - x^12 + 24*x^13 - 33*x^14 + 69*x^16 - 102*x^17 + ...
Further, the trisections of B(x) = C1(x) + C2(x) + C3(x) are
C1(x) = x^4/C3(x) = x - x^4 - x^7 - 3*x^10 - 9*x^13 - 30*x^16 - 110*x^19 - ...
C2(x) = -x^2, and
C3(x) = x^3 + x^6 + 2*x^9 + 6*x^12 + 20*x^15 + 71*x^18 + 267*x^21 + 1041*x^24 + 4168*x^27 + 17047*x^30 + 70902*x^33 + ... + A370446(n)*x^(3*n) + ...
Compare these series to the series trisections involved in series reversion of A264228.
SPECIFIC VALUES.
A(1/3) = 0.5339969110985873619406256103732700685272...
A(1/4) = 0.3373018860609501862067597141160425025580...
A(1/5) = 0.2509433336474255853462277222741392614966...
A(1/6) = 0.2003115176013404351183299069966738623357...
A(1/8) = 0.1429156905534693639298206599148805278651...
A(1/3)^3 = A(1/27 + 3*A(1/3)^2/9) = A(0.132087937391...) = 0.152270661558...
A(1/4)^3 = A(1/64 + 3*A(1/4)^2/16) = A(0.036957355438...) = 0.038375699859...
A(1/5)^3 = A(1/125 + 3*A(1/5)^2/25) = A(0.015556706804...) = 0.250943333647...
-
{a(n) = my(A=[1],G); for(i=1,n, G = x*Ser(A); A = Vec((subst(G,x, x^3 + 3*x^2*G^2) + x^4*O(x^#A))^(1/3)); );A[n+1]}
for(n=0,40, print1(a(n),", "))
A370446
Expansion of g.f. A(x) satisfying A(x)^3 + x^4/A(x)^3 = A(x^3) + x^4/A(x^3) - 3*x^2.
Original entry on oeis.org
1, 1, 2, 6, 20, 71, 267, 1041, 4168, 17047, 70902, 298967, 1275141, 5491504, 23846271, 104295430, 459023543, 2031459236, 9034769573, 40358643042, 180998556943, 814645632727, 3678542796070, 16659932961647, 75657738747396, 344446195875766, 1571786529601990, 7187790264787872
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 71*x^6 + 267*x^7 + 1041*x^8 + 4168*x^9 + 17047*x^10 + 70902*x^11 + 298967*x^12 + 1275141*x^13 + 5491504*x^14 + 23846271*x^15 + ...
RELATED SERIES.
We can illustrate the formulas with the following related expansions.
(1) A(x)^3 + 2*x^2 + x^4/A(x)^3 = x - x^2 + x^3 - x^4 + x^6 - x^7 + 2*x^9 - 3*x^10 + 6*x^12 - 9*x^13 + 20*x^15 - 30*x^16 + 71*x^18 - 110*x^19 + 267*x^21 + ...
which equals A(x^3) - x^2 + x^4/A(x^3), as can be seen from
x^4/A(x^3) = x - x^4 - x^7 - 3*x^10 - 9*x^13 - 30*x^16 - 110*x^19 + ...
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 31*x^6 + 114*x^7 + 435*x^8 + 1715*x^9 + ...
x^4/A(x)^3 = x - 3*x^2 - 4*x^4 - 9*x^5 - 30*x^6 - 115*x^7 - 435*x^8 - 1713*x^9 + ...
(2) Let F(x) be the g.f. of A370440, which begins
F(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 6*x^6 + 15*x^7 + 30*x^8 + 55*x^9 + 113*x^10 + 274*x^11 + 683*x^12 + ...
where F(x)^3 = F( x^3 + 3*x^2*F(x)^2 ),
then the series reversion of F(x) begins
A(x^3) - x^2 + x^4/A(x^3) = x - x^2 + x^3 - x^4 + x^6 - x^7 + 2*x^9 - 3*x^10 + 6*x^12 - 9*x^13 + 20*x^15 - 30*x^16 + 71*x^18 - 110*x^19 + 267*x^21 - 419*x^22 + 1041*x^24 + ...
(3) Let G(x) be the g.f. of A264228, which begins
G(x) = x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 274*x^8 + 785*x^9 + 2275*x^10 + 6656*x^11 + 19630*x^12 +...
where G(x)^3 = G( x^3/(1 - 3*x) ),
then the series reversion of G(x) begins
-x^2/(A(-x^3) - x^2 + x^4/A(-x^3)) = x^2/(x + x^2 + x^3 + x^4 - x^6 - x^7 + 2*x^9 + 3*x^10 - 6*x^12 - 9*x^13 + 20*x^15 + 30*x^16 - 71*x^18 - 110*x^19 + 267*x^21 + 419*x^22 - 1041*x^24 +...).
SPECIFIC VALUES.
A(1/4.834464) = 0.349644497578571280258023712232522068793519739...
A(1/5) = 0.29940801195429552263938628184744484915469836164855...
A(1/6) = 0.21539123666426270273178791857213676628593723946879...
A(1/7) = 0.17414937372444126736977770687571455113383911571251...
A(1/8) = 0.14713126344900776621336355426627444003268957268553...
A(1/5^3) = 0.00806504925055020701973761348380106375185943151538...
A(1/6^3) = 0.00465126435780731657600811126033650347236250831668...
A(1/7^3) = 0.00292400175440295890949208907819991271975334925594...
which may be used to verify that the formula
A(x)^3 + x^4/A(x)^3 = A(x^3) + x^4/A(x^3) - 3*x^2
holds for these specific values.
-
{a(n) = my(A=x); for(m=1,n, A=truncate(A) +x^4*O(x^m); A = ( x^4/(x^4/subst(A,x,x^3) + subst(A,x,x^3) - A^3 - 3*x^2) +x^4*O(x^n))^(1/3) );polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
A371709
Expansion of g.f. A(x) satisfying A( x*A(x)^2 + x*A(x)^3 ) = A(x)^3.
Original entry on oeis.org
1, 1, 1, 2, 6, 16, 39, 99, 271, 764, 2157, 6128, 17658, 51534, 151635, 448962, 1337493, 4008040, 12072594, 36524898, 110943633, 338218626, 1034509917, 3173811240, 9763898994, 30113782641, 93094164244, 288415278638, 895332445053, 2784580242557, 8675408291598, 27072326322939
Offset: 1
G.f. A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 16*x^6 + 39*x^7 + 99*x^8 + 271*x^9 + 764*x^10 + 2157*x^11 + 6128*x^12 + 17658*x^13 + 51534*x^14 + 151635*x^15 + 448962*x^16 + ...
where A( x*A(x)^2*(1 + A(x)) ) = A(x)^3.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 17*x^6 + 48*x^7 + 126*x^8 + 332*x^9 + 918*x^10 + 2616*x^11 + 7504*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 36*x^7 + 105*x^8 + 292*x^9 + 801*x^10 + 2256*x^11 + 6515*x^12 + 18981*x^13 + ...
A(x)^2 + A(x)^3 = x^2 + 3*x^3 + 6*x^4 + 12*x^5 + 30*x^6 + 84*x^7 + 231*x^8 + 624*x^9 + 1719*x^10 + 4872*x^11 + 14019*x^12 + 40599*x^13 + ...
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) * (1+x)/(1+x^3) = x - 2*x^4 + 3*x^7 - 5*x^10 + 7*x^13 - 9*x^16 + 12*x^19 - 15*x^22 + 18*x^25 - 23*x^28 + ... + (-1)^n*A005704(n)*x^(3*n+1) + ...
where A005704 is the number of partitions of 3*n into powers of 3.
We can show that g.f. A(x) = A( x*A(x)^2*(1 + A(x)) )^(1/3) satisfies
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(3^n))
by substituting x*A(x)^2*(1 + A(x)) for x in (4) to obtain
A(x)^3 = x * A(x)^2*(1 + A(x)) * Product_{n>=1} (1 + A(x)^(3^n))
which is equivalent to formula (4).
SPECIFIC VALUES.
A(3/10) = 0.526165645044542830201162330432965674027415264612114520...
A(1/4) = 0.353259384374080248921564026412797625837830114153200664...
A(1/5) = 0.255218141344695821239609680309162895225297482063273545...
A(t) = 1/2 and A(t*3/8) = 1/8 at t = (1/2)/Product_{n>=0} (1 + 1/2^(3^n)) = 0.295718718466711580562679377308518930409875701753934072...
A(t) = 1/3 and A(t*4/27) = 1/27 at t = (1/3)/Product_{n>=0} (1 + 1/3^(3^n)) = 0.241059181496179959557718992589733756750585121455883861...
A(t) = 1/4 and A(t*5/64) = 1/64 at t = (1/4)/Product_{n>=0} (1 + 1/4^(3^n)) = 0.196922325724019432212969925740117827612003158137366017...
-
/* Using series reversion of x/Product_{n>=0} (1 + x^(3^n)) */
{a(n) = my(A); A = serreverse( x/prod(k=0,ceil(log(n)/log(3)), (1 + x^(3^k) +x*O(x^n)) ) ); polcoeff(A,n)}
for(n=1,35, print1(a(n),", "))
-
/* Using A(x)^3 = A( x*A(x)^2 + x*A(x)^3 ) */
{a(n) = my(A=[1],F); for(i=1,n, A = concat(A,0); F = x*Ser(A);
A[#A] = polcoeff( subst(F,x, x*F^2 + x*F^3 ) - F^3, #A+2) ); A[n]}
for(n=1,35, print1(a(n),", "))
A264229
G.f. A(x) satisfies: A(x)^3 = A( x^3/(1-6*x) ), with A(0) = 0.
Original entry on oeis.org
1, 2, 8, 38, 192, 1008, 5428, 29752, 165232, 926986, 5242696, 29846440, 170846760, 982496400, 5672562432, 32864292248, 190977464576, 1112761458944, 6499186961080, 38040656888144, 223089977217248, 1310627164161296, 7712227735497024, 45449101195872960, 268204421736352320, 1584740639910023552, 9374834857254623744, 55519826063209918038
Offset: 1
G.f.: A(x) = x + 2*x^2 + 8*x^3 + 38*x^4 + 192*x^5 + 1008*x^6 + 5428*x^7 + 29752*x^8 + 165232*x^9 + 926986*x^10 + 5242696*x^11 + 29846440*x^12 + ...
where A(x)^3 = A( x^3/(1-6*x) ).
RELATED SERIES.
A(x)^3 = x^3 + 6*x^4 + 36*x^5 + 218*x^6 + 1320*x^7 + 7992*x^8 + 48392*x^9 + 293040*x^10 + 1774656*x^11 + 10748198*x^12 + 65101584*x^13 + ...
A( x/(1 + 2*x + 4*x^2) ) = x + 6*x^4 + 52*x^7 + 554*x^10 + 6888*x^13 + 95768*x^16 + 1435832*x^19 + 22605648*x^22 + 367354432*x^25 + 6097422934*x^28 + 102720725488*x^31 + 1749623396240*x^34 + 30056679361984*x^37 + ...
Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where
B(x) = 1 + 2*x + 4*x^2 + 6*x^3 - 24*x^5 - 56*x^6 + 368*x^8 + 986*x^9 - 7496*x^11 - 21144*x^12 + 173824*x^14 + 505040*x^15 - 4353184*x^17 + ...
Let C0(x) and C2(x) be series trisections of B(x), B(x) = C0(x) + 2*x + C2(x):
C0(x) = 1 + 6*x^3 - 56*x^6 + 986*x^9 - 21144*x^12 + 505040*x^15 - 12892588*x^18 + 344317272*x^21 - 9501257152*x^24 + ...
C2(x) = 4*x^2 - 24*x^5 + 368*x^8 - 7496*x^11 + 173824*x^14 - 4353184*x^17 + 114716608*x^20 - 3134509760*x^23 + ...
then C0(x) = 4*x^2/C2(x).
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3/(1-6*x +x*O(x^n))) )^(1/3) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
A264230
G.f. A(x) satisfies: A(x)^3 = A( x^3/(1-9*x) ), with A(0) = 0.
Original entry on oeis.org
1, 3, 18, 127, 957, 7497, 60233, 492558, 4080897, 34152449, 288107376, 2446274610, 20883006135, 179081408925, 1541668556502, 13316391292552, 115359341792511, 1001932660939401, 8722045942211055, 76082885748597996, 664898144584551048, 5820315513644860974, 51026465572312794534, 447965934572491365465, 3937723838880233903750
Offset: 1
G.f.: A(x) = x + 3*x^2 + 18*x^3 + 127*x^4 + 957*x^5 + 7497*x^6 + 60233*x^7 + 492558*x^8 + 4080897*x^9 + 34152449*x^10 + 288107376*x^11 + ...
where A(x)^3 = A( x^3/(1-3*x) ).
RELATED SERIES.
A(x)^3 = x^3 + 9*x^4 + 81*x^5 + 732*x^6 + 6615*x^7 + 59778*x^8 + 540207*x^9 + 4881870*x^10 + 44118351*x^11 + 398712097*x^12 + 3603351699*x^13 + ...
(A(x)/x)^(1/3) = 1 + x + 5*x^2 + 32*x^3 + 225*x^4 + 1672*x^5 + 12873*x^6 + 101574*x^7 + 816050*x^8 + 6647378*x^9 + 54742914*x^10 + 454832564*x^11 + ...
A( x/(1 + 3*x + 9*x^2) ) = x + 19*x^4 + 482*x^7 + 13946*x^10 + 444438*x^13 + 15330112*x^16 + 564221847*x^19 + 21863841462*x^22 + 881431824107*x^25 + 36605787985301*x^28 + 1554163122195738*x^31 + 67078838997215060*x^34 + 2931316135685487004*x^37 + ...
Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where
B(x) = 1 + 3*x + 9*x^2 + 19*x^3 - 171*x^5 - 601*x^6 + 8658*x^8 + 34409*x^9 - 576954*x^11 - 2416249*x^12 + 43795764*x^14 + 188941890*x^15 + ...
Let C0(x) and C2(x) be series trisections of B(x), B(x) = C0(x) + 3*x + C2(x):
C0(x) = 1 + 19*x^3 - 601*x^6 + 34409*x^9 - 2416249*x^12 + 188941890*x^15 - 15788781918*x^18 + ...
C2(x) = 9*x^2 - 171*x^5 + 8658*x^8 - 576954*x^11 + 43795764*x^14 - 3590437581*x^17 + 309719962683*x^20 + ...
then C0(x) = 9*x^2/C2(x).
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3/(1-9*x +x*O(x^n))) )^(1/3) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
A386659
G.f. A(x) satisfies A(x^3) = A(x)^3/(1 + 3*A(x)).
Original entry on oeis.org
1, 1, 0, 0, 1, 0, -1, 1, 0, -2, 3, 0, -6, 10, 0, -22, 33, 0, -79, 122, 0, -299, 472, 0, -1179, 1871, 0, -4754, 7601, 0, -19553, 31449, 0, -81720, 132020, 0, -345949, 561034, 0, -1480475, 2408712, 0, -6394189, 10431950, 0, -27835400, 45521500, 0, -122008360, 199948108, 0, -538016031, 883331845, 0
Offset: 1
G.f.: A(x) = x + x^2 + x^5 - x^7 + x^8 - 2*x^10 + 3*x^11 - 6*x^13 + 10*x^14 - 22*x^16 + 33*x^17 - 79*x^19 + 122*x^20 - 299*x^22 + 472*x^23 - 1179*x^25 + 1871*x^26 - 4754*x^28 + ...
where A(x^3) = A(x)^3/(1 + 3*A(x)).
RELATED SERIES.
The series trisections are A(x) = T1(x) + T2(x) + T3(x), with T3(x) = 0 and
T1(x) = x - x^7 - 2*x^10 - 6*x^13 - 22*x^16 - 79*x^19 - 299*x^22 - 1179*x^25 - 4754*x^28 - 19553*x^31 - 81720*x^34 - 345949*x^37 - 1480475*x^40 + ...
T2(x) = x^2 + x^5 + x^8 + 3*x^11 + 10*x^14 + 33*x^17 + 122*x^20 + 472*x^23 + 1871*x^26 + 7601*x^29 + 31449*x^32 + 132020*x^35 + 561034*x^38 + 2408712*x^41 + ...
where T1(x)*T2(x) = A(x^3) and
T2(x)/T1(x) = x + x^4 + 2*x^7 + 6*x^10 + 20*x^13 + 71*x^16 + 267*x^19 + 1041*x^22 + 4168*x^25 + 17047*x^28 + ... + A370446(n)*x^(3*n-2) + ...
The cube of A(x) also has interesting series trisections.
A(x)^3 = x^3 + 3*x^4 + 3*x^5 + x^6 + 3*x^7 + 6*x^8 - 3*x^10 + 6*x^11 - 9*x^13 + 12*x^14 + x^15 - 21*x^16 + 42*x^17 - 84*x^19 + 132*x^20 - x^21 - 309*x^22 + 465*x^23 + x^24 + ...
where cubic trisections, defined by A(x)^3 = C1(x) + C2(x) + C3(x), obey
C3(x) = A(x^3),
C1(x)*C2(x) = 9*A(x^3)^3,
C2(x)/C1(x) = T2(x)/T1(x) = x + x^4 + 2*x^7 + 6*x^10 + 20*x^13 + 71*x^16 + 267*x^19 + 1041*x^22 + ... + A370446(n)*x^(3*n-2) + ...
The cubic trisections begin
C1(x) = 3*x^4 + 3*x^7 - 3*x^10 - 9*x^13 - 21*x^16 - 84*x^19 - 309*x^22 - 1137*x^25 - 4449*x^28 - 17868*x^31 - 73137*x^34 - 304662*x^37 - 1286388*x^40 - ...
C2(x) = 3*x^5 + 6*x^8 + 6*x^11 + 12*x^14 + 42*x^17 + 132*x^20 + 465*x^23 + 1791*x^26 + 7059*x^29 + 28503*x^32 + 117498*x^35 + 491757*x^38 + 2084481*x^41 + ...
C3(x) = x^3 + x^6 + x^15 - x^21 + x^24 - 2*x^30 + 3*x^33 - 6*x^39 + 10*x^42 - 22*x^48 + 33*x^51 + ... + a(n)*x^(3*n) + ...
SPECIFIC VALUES.
A(r) = 1 and A(r^3) = 1/4 at r = 0.591403538949431343296352603332310036448543950513103383318429...
A(t) = 4/5 and A(t^3) = 64/425 at t = 0.510303761967726164722767738473741580674762344121899...
A(t) = 3/4 and A(t^3) = 27/208 at t = 0.488075704869119285515484767956113771965332978558674...
A(t) = 2/3 and A(t^3) = 8/81 at t = 0.4490656139430636435247188510711544862057647445925319...
A(t) = 1/2 and A(t^3) = 1/20 at t = 0.3627219904933172573963798296372201737748692616169519...
A(t) = 1/3 and A(t^3) = 1/54 at t = 0.2629820536068200748031820994203659473004640287705972...
A(t) = 1/4 and A(t^3) = 1/112 at t = r^3 = 0.206848205250953970652722994332475597057157203674066...
A(t) = 1/5 and A(t^3) = 1/200 at t = 0.170714946526968286919515308872119424149511936479752...
A(1/2) = 0.7765855959847885627987696942587081429921785817514493... where A(1/8) = A(1/2)^3/(1 + 3*A(1/2)).
A(1/3) = 0.4482359377100401660271468423571796863698018480508060... where A(1/27) = A(1/3)^3/(1 + 3*A(1/3)).
A(1/4) = 0.3134295384970268001359461486249333443235800254018265... where A(1/64) = A(1/4)^3/(1 + 3*A(1/4)).
A(1/8) = 0.1406550988235082384593126468031209848166962450443705...
A(1/27) = 0.038408848749171730717291402355749106248762924579924...
A(1/64) = 0.015869141556098751959628853939856842544839850661716...
-
{a(n) = my(V=[0,1]); for(i=1,n, V = concat(V,0); A = Ser(V);
V[#V] = polcoef( subst(A,x, x^3) - A^3/(1 + 3*A), #V+1)/3; ); V[n+1] }
for(n=1,54,print1(a(n),", "))
Showing 1-7 of 7 results.
Comments