cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A361763 Expansion of g.f. A(x) satisfying A(x)^3 = A( x^3/(1 - 3*x)^3 ).

Original entry on oeis.org

1, 3, 9, 28, 93, 333, 1271, 5064, 20673, 85460, 355659, 1486719, 6238608, 26278281, 111114558, 471608944, 2008906581, 8586410085, 36816550550, 158332335279, 682843960665, 2952865525730, 12802463157570, 55646477022330, 242465061290160, 1059022767175173, 4636452916770489
Offset: 1

Views

Author

Paul D. Hanna, Mar 23 2023

Keywords

Comments

Related Catalan identity: F(x)^2 = F( x^2/(1 - 2*x)^2 ), where F(x) = x*C(x)^2 and C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
Radius of convergence of g.f. A(x) is r where r is the real root of r = (1 - 3*r)^(3/2) with A(r) = 1 and r = (52 - (324*sqrt(717) + 8108)^(1/3) + (324*sqrt(717) - 8108)^(1/3))/162 = 0.214054846272632706742...

Examples

			G.f.: A(x) = x + 3*x^2 + 9*x^3 + 28*x^4 + 93*x^5 + 333*x^6 + 1271*x^7 + 5064*x^8 + 20673*x^9 + 85460*x^10 + 355659*x^11 + 1486719*x^12 + ...
where
A( x^3/(1 - 3*x)^3 ) = x^3 + 9*x^4 + 54*x^5 + 273*x^6 + 1269*x^7 + 5670*x^8 + 24957*x^9 + 109593*x^10 + 482598*x^11 + 2133082*x^12 + ...
which equals A(x)^3.
RELATED SERIES.
Notice that the following cube root is an integer series
( A(x)/x )^(1/3) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 197*x^6 + 779*x^7 + 3135*x^8 + 12709*x^9 + 51757*x^10 + ... + A361762(n)*x^n + ...
Also, let B(x) satisfy A(x/B(x)) = x and B(A(x)) = A(x)/x,
then B(x) = x/Series_Reversion(A(x)) is the g.f. of A107092,
B(x) = 1 + 3*x + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18 + 55*x^21 - 142*x^24 + 376*x^27 - 1011*x^30 + ...
such that B(x)^3 = B(x^3) + 3*x,
as shown by the series
B(x)^(1/3) = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 22*x^6 + 55*x^7 - 142*x^8 + 376*x^9 - 1011*x^10 + ...
SPECIFIC VALUES.
A(1/5) = A(1/8)^(1/3) = 0.586384210523490911367880492498...
A(1/5) = (1/5) * (1 - 3/5)^(-1) * (1 - 3/8)^(-1/3) * (1 - 3/125)^(-1/9) * (1 - 3/1815848)^(-1/27) * ...
A(1/6) = A(1/27)^(1/3) = 0.346688997573685318336777346240...
A(1/6) = (1/6) * (1 - 3/6)^(-1) * (1 - 3/27)^(-1/3) * (1 - 3/13824)^(-1/9) * (1 - 3/2640087986661)^(-1/27) * ...
A(1/9) = A(1/216)^(1/3) = 0.16744549995321182031691216552466...
A(1/12) = A(1/729)^(1/3) = 0.11126394649161862248626102306202...
		

Crossrefs

Cf. A361762 ((A(x)/x)^(1/3)), A264230, A107092, A091190, A361765.

Programs

  • PARI
    {a(n) = my(A=x); for(i=1, #binary(n+1), A = ( subst(A, x, x^3/(1 - 3*x +x*O(x^n))^3 ) )^(1/3) ); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A(x)^3 = A( x^3/(1 - 3*x)^3 ).
(2) A(x^3) = A( x/(1 + 3*x) )^3.
(3) A(x) = x * Product_{n>=0} 1/(1 - 3/F(n,x))^(1/3^n), where F(0,x) = 1/x, F(m,x) = (F(m-1,x) - 3)^3 for m > 0.
(4) x/Series_Reversion(A(x)) = B(x) such that B(x)^3 = B(x^3) + 3*x (cf. A107092).

A370440 Expansion of g.f. A(x) satisfying A(x) = A( x^3 + 3*x^2*A(x)^2 )^(1/3), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 15, 30, 55, 113, 274, 683, 1596, 3547, 7990, 18968, 46530, 113663, 273392, 656421, 1598270, 3951520, 9827565, 24411649, 60599823, 150978177, 378293690, 951828992, 2398983638, 6051008950, 15284145261, 38690832455, 98154905623, 249390491237, 634296702273
Offset: 1

Views

Author

Paul D. Hanna, Mar 09 2024

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 6*x^6 + 15*x^7 + 30*x^8 + 55*x^9 + 113*x^10 + 274*x^11 + 683*x^12 + 1596*x^13 + 3547*x^14 + 7990*x^15 + ...
where A(x)^3 = A( x^3 + 3*x^2*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 18*x^7 + 47*x^8 + 106*x^9 + 216*x^10 + 450*x^11 + 1040*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 18*x^7 + 42*x^8 + 109*x^9 + 264*x^10 + 585*x^11 + 1270*x^12 + ...
Let B(x) denote the series reversion of A(x), A(B(x)) = x,
B(x) = x - x^2 + x^3 - x^4 + x^6 - x^7 + 2*x^9 - 3*x^10 + 6*x^12 - 9*x^13 + 20*x^15 - 30*x^16 + 71*x^18 - 110*x^19 + 267*x^21 - 419*x^22 + 1041*x^24 - 1648*x^25 + 4168*x^27 - 6652*x^28 + 17047*x^30 + ...
then B(x^3) = B(x)^3 + 3*x^2*B(x)^2, where
B(x)^2 = x^2 - 2*x^3 + 3*x^4 - 4*x^5 + 3*x^6 - 3*x^8 + 4*x^9 - 8*x^11 + 11*x^12 - 23*x^14 + 34*x^15 + ...
B(x)^3 = x^3 - 3*x^4 + 6*x^5 - 10*x^6 + 12*x^7 - 9*x^8 + x^9 + 9*x^10 - 12*x^11 - x^12 + 24*x^13 - 33*x^14 + 69*x^16 - 102*x^17 + ...
Further, the trisections of B(x) = C1(x) + C2(x) + C3(x) are
C1(x) = x^4/C3(x) = x - x^4 - x^7 - 3*x^10 - 9*x^13 - 30*x^16 - 110*x^19 - ...
C2(x) = -x^2, and
C3(x) = x^3 + x^6 + 2*x^9 + 6*x^12 + 20*x^15 + 71*x^18 + 267*x^21 + 1041*x^24 + 4168*x^27 + 17047*x^30 + 70902*x^33 + ... + A370446(n)*x^(3*n) + ...
Compare these series to the series trisections involved in series reversion of A264228.
SPECIFIC VALUES.
A(1/3) = 0.5339969110985873619406256103732700685272...
A(1/4) = 0.3373018860609501862067597141160425025580...
A(1/5) = 0.2509433336474255853462277222741392614966...
A(1/6) = 0.2003115176013404351183299069966738623357...
A(1/8) = 0.1429156905534693639298206599148805278651...
A(1/3)^3 = A(1/27 + 3*A(1/3)^2/9) = A(0.132087937391...) = 0.152270661558...
A(1/4)^3 = A(1/64 + 3*A(1/4)^2/16) = A(0.036957355438...) = 0.038375699859...
A(1/5)^3 = A(1/125 + 3*A(1/5)^2/25) = A(0.015556706804...) = 0.250943333647...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],G); for(i=1,n, G = x*Ser(A); A = Vec((subst(G,x, x^3 + 3*x^2*G^2) + x^4*O(x^#A))^(1/3)); );A[n+1]}
    for(n=0,40, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n) * x^n satisfies the following formulas.
(1) A(x) = A( x^3 + 3*x^2*A(x)^2 )^(1/3).
(2) B(x^3) = B(x)^3 + 3*x^2*B(x)^2, where A(B(x)) = x.
a(n) ~ c * d^n / n^(3/2), where d = 2.653503750287... and c = 0.193303... - Vaclav Kotesovec, Mar 14 2024

A370446 Expansion of g.f. A(x) satisfying A(x)^3 + x^4/A(x)^3 = A(x^3) + x^4/A(x^3) - 3*x^2.

Original entry on oeis.org

1, 1, 2, 6, 20, 71, 267, 1041, 4168, 17047, 70902, 298967, 1275141, 5491504, 23846271, 104295430, 459023543, 2031459236, 9034769573, 40358643042, 180998556943, 814645632727, 3678542796070, 16659932961647, 75657738747396, 344446195875766, 1571786529601990, 7187790264787872
Offset: 1

Views

Author

Paul D. Hanna, Mar 09 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 71*x^6 + 267*x^7 + 1041*x^8 + 4168*x^9 + 17047*x^10 + 70902*x^11 + 298967*x^12 + 1275141*x^13 + 5491504*x^14 + 23846271*x^15 + ...
RELATED SERIES.
We can illustrate the formulas with the following related expansions.
(1) A(x)^3 + 2*x^2 + x^4/A(x)^3 = x - x^2 + x^3 - x^4 + x^6 - x^7 + 2*x^9 - 3*x^10 + 6*x^12 - 9*x^13 + 20*x^15 - 30*x^16 + 71*x^18 - 110*x^19 + 267*x^21 + ...
which equals A(x^3) - x^2 + x^4/A(x^3), as can be seen from
x^4/A(x^3) = x - x^4 - x^7 - 3*x^10 - 9*x^13 - 30*x^16 - 110*x^19 + ...
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 31*x^6 + 114*x^7 + 435*x^8 + 1715*x^9 + ...
x^4/A(x)^3 = x - 3*x^2 - 4*x^4 - 9*x^5 - 30*x^6 - 115*x^7 - 435*x^8 - 1713*x^9 + ...
(2) Let F(x) be the g.f. of A370440, which begins
F(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 6*x^6 + 15*x^7 + 30*x^8 + 55*x^9 + 113*x^10 + 274*x^11 + 683*x^12 + ...
where F(x)^3 = F( x^3 + 3*x^2*F(x)^2 ),
then the series reversion of F(x) begins
A(x^3) - x^2 + x^4/A(x^3) = x - x^2 + x^3 - x^4 + x^6 - x^7 + 2*x^9 - 3*x^10 + 6*x^12 - 9*x^13 + 20*x^15 - 30*x^16 + 71*x^18 - 110*x^19 + 267*x^21 - 419*x^22 + 1041*x^24 + ...
(3) Let G(x) be the g.f. of A264228, which begins
G(x) = x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 274*x^8 + 785*x^9 + 2275*x^10 + 6656*x^11 + 19630*x^12 +...
where G(x)^3 = G( x^3/(1 - 3*x) ),
then the series reversion of G(x) begins
-x^2/(A(-x^3) - x^2 + x^4/A(-x^3)) = x^2/(x + x^2 + x^3 + x^4 - x^6 - x^7 + 2*x^9 + 3*x^10 - 6*x^12 - 9*x^13 + 20*x^15 + 30*x^16 - 71*x^18 - 110*x^19 + 267*x^21 + 419*x^22 - 1041*x^24 +...).
SPECIFIC VALUES.
A(1/4.834464) = 0.349644497578571280258023712232522068793519739...
A(1/5) = 0.29940801195429552263938628184744484915469836164855...
A(1/6) = 0.21539123666426270273178791857213676628593723946879...
A(1/7) = 0.17414937372444126736977770687571455113383911571251...
A(1/8) = 0.14713126344900776621336355426627444003268957268553...
A(1/5^3) = 0.00806504925055020701973761348380106375185943151538...
A(1/6^3) = 0.00465126435780731657600811126033650347236250831668...
A(1/7^3) = 0.00292400175440295890949208907819991271975334925594...
which may be used to verify that the formula
A(x)^3 + x^4/A(x)^3 = A(x^3) + x^4/A(x^3) - 3*x^2
holds for these specific values.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(m=1,n, A=truncate(A) +x^4*O(x^m); A = ( x^4/(x^4/subst(A,x,x^3) + subst(A,x,x^3) - A^3 - 3*x^2) +x^4*O(x^n))^(1/3) );polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 + 2*x^2 + x^4/A(x)^3 = A(x^3) - x^2 + x^4/A(x^3).
(2) F( A(x^3) - x^2 + x^4/A(x^3) ) = x, where F(x) = F( x^3 + 3*x^2*F(x)^2 )^(1/3) is the g.f. of A370440.
(3) G( -x^2/(A(-x^3) - x^2 + x^4/A(-x^3)) ) = x, where G(x) = G( x^3/(1 - 3*x) )^(1/3) is the g.f. of A264228.
a(n) ~ c * d^n / n^(3/2), where d = 4.8344630246454026903035642546835542141482126303313357979263... and c = 0.0713578385738499677445741870058758452888939567284935382... - Vaclav Kotesovec, Mar 13 2024
The radius of convergence r = 0.20684820525095397... = 1/d (where d is given above), and A(r) = 0.3497581458819115559285308998459940399916633464611700768... satisfy A(r) = r^(2/3) and A(r^3) = (5 - sqrt(21))/2 * r^2. - Paul D. Hanna, Mar 13 2024

A371709 Expansion of g.f. A(x) satisfying A( x*A(x)^2 + x*A(x)^3 ) = A(x)^3.

Original entry on oeis.org

1, 1, 1, 2, 6, 16, 39, 99, 271, 764, 2157, 6128, 17658, 51534, 151635, 448962, 1337493, 4008040, 12072594, 36524898, 110943633, 338218626, 1034509917, 3173811240, 9763898994, 30113782641, 93094164244, 288415278638, 895332445053, 2784580242557, 8675408291598, 27072326322939
Offset: 1

Views

Author

Paul D. Hanna, May 02 2024

Keywords

Comments

Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108):
(1) C(x)^2 = C( x*C(x)*(1 + C(x)) ),
(2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ),
(3) C(x)^8 = C( x*C(x)^7*(1 + C(x))*(1 + C(x)^2)*(1 + C(x)^4) ),
(4) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0.
a(3^n) == 1 (mod 3) for n >= 0.
a(2*3^n) == 1 (mod 3) for n >= 0.
a(n) == 2 (mod 3) iff n is the sum of 2 distinct powers of 3 (A038464).

Examples

			G.f. A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 16*x^6 + 39*x^7 + 99*x^8 + 271*x^9 + 764*x^10 + 2157*x^11 + 6128*x^12 + 17658*x^13 + 51534*x^14 + 151635*x^15 + 448962*x^16 + ...
where A( x*A(x)^2*(1 + A(x)) ) = A(x)^3.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 17*x^6 + 48*x^7 + 126*x^8 + 332*x^9 + 918*x^10 + 2616*x^11 + 7504*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 36*x^7 + 105*x^8 + 292*x^9 + 801*x^10 + 2256*x^11 + 6515*x^12 + 18981*x^13 + ...
A(x)^2 + A(x)^3 = x^2 + 3*x^3 + 6*x^4 + 12*x^5 + 30*x^6 + 84*x^7 + 231*x^8 + 624*x^9 + 1719*x^10 + 4872*x^11 + 14019*x^12 + 40599*x^13 + ...
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) * (1+x)/(1+x^3) = x - 2*x^4 + 3*x^7 - 5*x^10 + 7*x^13 - 9*x^16 + 12*x^19 - 15*x^22 + 18*x^25 - 23*x^28 + ... + (-1)^n*A005704(n)*x^(3*n+1) + ...
where A005704 is the number of partitions of 3*n into powers of 3.
We can show that g.f. A(x) = A( x*A(x)^2*(1 + A(x)) )^(1/3) satisfies
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(3^n))
by substituting x*A(x)^2*(1 + A(x)) for x in (4) to obtain
A(x)^3 = x * A(x)^2*(1 + A(x)) * Product_{n>=1} (1 + A(x)^(3^n))
which is equivalent to formula (4).
SPECIFIC VALUES.
A(3/10) = 0.526165645044542830201162330432965674027415264612114520...
A(1/4) = 0.353259384374080248921564026412797625837830114153200664...
A(1/5) = 0.255218141344695821239609680309162895225297482063273545...
A(t) = 1/2 and A(t*3/8) = 1/8 at t = (1/2)/Product_{n>=0} (1 + 1/2^(3^n)) = 0.295718718466711580562679377308518930409875701753934072...
A(t) = 1/3 and A(t*4/27) = 1/27 at t = (1/3)/Product_{n>=0} (1 + 1/3^(3^n)) = 0.241059181496179959557718992589733756750585121455883861...
A(t) = 1/4 and A(t*5/64) = 1/64 at t = (1/4)/Product_{n>=0} (1 + 1/4^(3^n)) = 0.196922325724019432212969925740117827612003158137366017...
		

Crossrefs

Programs

  • PARI
    /* Using series reversion of x/Product_{n>=0} (1 + x^(3^n)) */
    {a(n) = my(A); A = serreverse( x/prod(k=0,ceil(log(n)/log(3)), (1 + x^(3^k) +x*O(x^n)) ) ); polcoeff(A,n)}
    for(n=1,35, print1(a(n),", "))
    
  • PARI
    /* Using A(x)^3 = A( x*A(x)^2 + x*A(x)^3 ) */
    {a(n) = my(A=[1],F); for(i=1,n, A = concat(A,0); F = x*Ser(A);
    A[#A] = polcoeff( subst(F,x, x*F^2 + x*F^3 ) - F^3, #A+2) ); A[n]}
    for(n=1,35, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A( x*A(x)^2*(1 + A(x)) ).
(2) A(x)^9 = A( x*A(x)^8*(1 + A(x))*(1 + A(x)^3) ).
(3) A(x)^27 = A( x*A(x)^26*(1 + A(x))*(1 + A(x)^3)*(1 + A(x)^9) ).
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(3^n)).
(5) A(x) = Series_Reversion( x / Product_{n>=0} (1 + x^(3^n)) ).
a(n) ~ c * d^n / n^(3/2), where d = 3.2753449994351908157330968510747739... and c = 0.1559869008021616116037651076359... - Vaclav Kotesovec, May 03 2024
The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} 3^n * A(r)^(3^n) / (1 + A(r)^(3^n)) and r = A(r) / Product_{n>=0} (1 + A(r)^(3^n)), where r = 0.30531134893345362211... = 1/d (d is given above) and A(r) = 0.600582105427215700175254768411726892599... - Paul D. Hanna, May 03 2024

A264229 G.f. A(x) satisfies: A(x)^3 = A( x^3/(1-6*x) ), with A(0) = 0.

Original entry on oeis.org

1, 2, 8, 38, 192, 1008, 5428, 29752, 165232, 926986, 5242696, 29846440, 170846760, 982496400, 5672562432, 32864292248, 190977464576, 1112761458944, 6499186961080, 38040656888144, 223089977217248, 1310627164161296, 7712227735497024, 45449101195872960, 268204421736352320, 1584740639910023552, 9374834857254623744, 55519826063209918038
Offset: 1

Views

Author

Paul D. Hanna, Nov 08 2015

Keywords

Comments

Radius of convergence is r = (sqrt(40) - 6)/2, where r = r^3/(1-6*r), with A(r) = 1.
Compare to a g.f. M(x) of Motzkin numbers: M(x)^2 = M(x^2/(1-2*x)) where M(x) = (1-x - sqrt(1-2*x-3*x^2))/(2*x).

Examples

			G.f.: A(x) = x + 2*x^2 + 8*x^3 + 38*x^4 + 192*x^5 + 1008*x^6 + 5428*x^7 + 29752*x^8 + 165232*x^9 + 926986*x^10 + 5242696*x^11 + 29846440*x^12 + ...
where A(x)^3 = A( x^3/(1-6*x) ).
RELATED SERIES.
A(x)^3 = x^3 + 6*x^4 + 36*x^5 + 218*x^6 + 1320*x^7 + 7992*x^8 + 48392*x^9 + 293040*x^10 + 1774656*x^11 + 10748198*x^12 + 65101584*x^13 + ...
A( x/(1 + 2*x + 4*x^2) ) = x + 6*x^4 + 52*x^7 + 554*x^10 + 6888*x^13 + 95768*x^16 + 1435832*x^19 + 22605648*x^22 + 367354432*x^25 + 6097422934*x^28 + 102720725488*x^31 + 1749623396240*x^34 + 30056679361984*x^37 + ...
Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where
B(x) = 1 + 2*x + 4*x^2 + 6*x^3 - 24*x^5 - 56*x^6 + 368*x^8 + 986*x^9 - 7496*x^11 - 21144*x^12 + 173824*x^14 + 505040*x^15 - 4353184*x^17 + ...
Let C0(x) and C2(x) be series trisections of B(x), B(x) = C0(x) + 2*x + C2(x):
C0(x) = 1 + 6*x^3 - 56*x^6 + 986*x^9 - 21144*x^12 + 505040*x^15 - 12892588*x^18 + 344317272*x^21 - 9501257152*x^24 + ...
C2(x) = 4*x^2 - 24*x^5 + 368*x^8 - 7496*x^11 + 173824*x^14 - 4353184*x^17 + 114716608*x^20 - 3134509760*x^23 + ...
then C0(x) = 4*x^2/C2(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3/(1-6*x +x*O(x^n))) )^(1/3) ); polcoeff(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

From Paul D. Hanna, Mar 17 2024: (Start)
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following.
(1) A(x)^3 = A( x^3/(1 - 6*x) ).
(2) A( x/(1 + 6*x) )^3 = A( x^3/(1 + 6*x)^2 ).
(3) A( x/(1 + 2*x + 4*x^2) )^3 = A( x^3/(1 - 8*x^3)^2 ). (End)

A264230 G.f. A(x) satisfies: A(x)^3 = A( x^3/(1-9*x) ), with A(0) = 0.

Original entry on oeis.org

1, 3, 18, 127, 957, 7497, 60233, 492558, 4080897, 34152449, 288107376, 2446274610, 20883006135, 179081408925, 1541668556502, 13316391292552, 115359341792511, 1001932660939401, 8722045942211055, 76082885748597996, 664898144584551048, 5820315513644860974, 51026465572312794534, 447965934572491365465, 3937723838880233903750
Offset: 1

Views

Author

Paul D. Hanna, Nov 08 2015

Keywords

Comments

Radius of convergence is r = (sqrt(85) - 9)/2, where r = r^3/(1-9*r), with A(r) = 1.
Compare to a g.f. M(x) of Motzkin numbers: M(x)^2 = M(x^2/(1-2*x)) where M(x) = (1-x - sqrt(1-2*x-3*x^2))/(2*x).

Examples

			G.f.: A(x) = x + 3*x^2 + 18*x^3 + 127*x^4 + 957*x^5 + 7497*x^6 + 60233*x^7 + 492558*x^8 + 4080897*x^9 + 34152449*x^10 + 288107376*x^11 + ...
where A(x)^3 = A( x^3/(1-3*x) ).
RELATED SERIES.
A(x)^3 = x^3 + 9*x^4 + 81*x^5 + 732*x^6 + 6615*x^7 + 59778*x^8 + 540207*x^9 + 4881870*x^10 + 44118351*x^11 + 398712097*x^12 + 3603351699*x^13 + ...
(A(x)/x)^(1/3) = 1 + x + 5*x^2 + 32*x^3 + 225*x^4 + 1672*x^5 + 12873*x^6 + 101574*x^7 + 816050*x^8 + 6647378*x^9 + 54742914*x^10 + 454832564*x^11 + ...
A( x/(1 + 3*x + 9*x^2) ) = x + 19*x^4 + 482*x^7 + 13946*x^10 + 444438*x^13 + 15330112*x^16 + 564221847*x^19 + 21863841462*x^22 + 881431824107*x^25 + 36605787985301*x^28 + 1554163122195738*x^31 + 67078838997215060*x^34 + 2931316135685487004*x^37 + ...
Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where
B(x) = 1 + 3*x + 9*x^2 + 19*x^3 - 171*x^5 - 601*x^6 + 8658*x^8 + 34409*x^9 - 576954*x^11 - 2416249*x^12 + 43795764*x^14 + 188941890*x^15 + ...
Let C0(x) and C2(x) be series trisections of B(x), B(x) = C0(x) + 3*x + C2(x):
C0(x) = 1 + 19*x^3 - 601*x^6 + 34409*x^9 - 2416249*x^12 + 188941890*x^15 - 15788781918*x^18 + ...
C2(x) = 9*x^2 - 171*x^5 + 8658*x^8 - 576954*x^11 + 43795764*x^14 - 3590437581*x^17 + 309719962683*x^20 + ...
then C0(x) = 9*x^2/C2(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3/(1-9*x +x*O(x^n))) )^(1/3) ); polcoeff(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

From Paul D. Hanna, Mar 17 2024: (Start)
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following.
(1) A(x)^3 = A( x^3/(1 - 9*x) ).
(2) A( x/(1 + 9*x) )^3 = A( x^3/(1 + 9*x)^2 ).
(3) A( x/(1 + 3*x + 9*x^2) )^3 = A( x^3/(1 - 27*x^3)^2 ). (End)

A386659 G.f. A(x) satisfies A(x^3) = A(x)^3/(1 + 3*A(x)).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, -1, 1, 0, -2, 3, 0, -6, 10, 0, -22, 33, 0, -79, 122, 0, -299, 472, 0, -1179, 1871, 0, -4754, 7601, 0, -19553, 31449, 0, -81720, 132020, 0, -345949, 561034, 0, -1480475, 2408712, 0, -6394189, 10431950, 0, -27835400, 45521500, 0, -122008360, 199948108, 0, -538016031, 883331845, 0
Offset: 1

Views

Author

Paul D. Hanna, Aug 28 2025

Keywords

Comments

Compare to: F(x^2) = F(x)^2/(1 + 2*F(x)) holds when F(x) = x/(1-x).

Examples

			G.f.: A(x) = x + x^2 + x^5 - x^7 + x^8 - 2*x^10 + 3*x^11 - 6*x^13 + 10*x^14 - 22*x^16 + 33*x^17 - 79*x^19 + 122*x^20 - 299*x^22 + 472*x^23 - 1179*x^25 + 1871*x^26 - 4754*x^28 + ...
where A(x^3) = A(x)^3/(1 + 3*A(x)).
RELATED SERIES.
The series trisections are A(x) = T1(x) + T2(x) + T3(x), with T3(x) = 0 and
T1(x) = x - x^7 - 2*x^10 - 6*x^13 - 22*x^16 - 79*x^19 - 299*x^22 - 1179*x^25 - 4754*x^28 - 19553*x^31 - 81720*x^34 - 345949*x^37 - 1480475*x^40 + ...
T2(x) = x^2 + x^5 + x^8 + 3*x^11 + 10*x^14 + 33*x^17 + 122*x^20 + 472*x^23 + 1871*x^26 + 7601*x^29 + 31449*x^32 + 132020*x^35 + 561034*x^38 + 2408712*x^41 + ...
where T1(x)*T2(x) = A(x^3) and
T2(x)/T1(x) = x + x^4 + 2*x^7 + 6*x^10 + 20*x^13 + 71*x^16 + 267*x^19 + 1041*x^22 + 4168*x^25 + 17047*x^28 + ... + A370446(n)*x^(3*n-2) + ...
The cube of A(x) also has interesting series trisections.
A(x)^3 = x^3 + 3*x^4 + 3*x^5 + x^6 + 3*x^7 + 6*x^8 - 3*x^10 + 6*x^11 - 9*x^13 + 12*x^14 + x^15 - 21*x^16 + 42*x^17 - 84*x^19 + 132*x^20 - x^21 - 309*x^22 + 465*x^23 + x^24 + ...
where cubic trisections, defined by A(x)^3 = C1(x) + C2(x) + C3(x), obey
C3(x) = A(x^3),
C1(x)*C2(x) = 9*A(x^3)^3,
C2(x)/C1(x) = T2(x)/T1(x) = x + x^4 + 2*x^7 + 6*x^10 + 20*x^13 + 71*x^16 + 267*x^19 + 1041*x^22 + ... + A370446(n)*x^(3*n-2) + ...
The cubic trisections begin
C1(x) = 3*x^4 + 3*x^7 - 3*x^10 - 9*x^13 - 21*x^16 - 84*x^19 - 309*x^22 - 1137*x^25 - 4449*x^28 - 17868*x^31 - 73137*x^34 - 304662*x^37 - 1286388*x^40 - ...
C2(x) = 3*x^5 + 6*x^8 + 6*x^11 + 12*x^14 + 42*x^17 + 132*x^20 + 465*x^23 + 1791*x^26 + 7059*x^29 + 28503*x^32 + 117498*x^35 + 491757*x^38 + 2084481*x^41 + ...
C3(x) = x^3 + x^6 + x^15 - x^21 + x^24 - 2*x^30 + 3*x^33 - 6*x^39 + 10*x^42 - 22*x^48 + 33*x^51 + ... + a(n)*x^(3*n) + ...
SPECIFIC VALUES.
A(r) = 1 and A(r^3) = 1/4 at r = 0.591403538949431343296352603332310036448543950513103383318429...
A(t) = 4/5 and A(t^3) = 64/425 at t = 0.510303761967726164722767738473741580674762344121899...
A(t) = 3/4 and A(t^3) = 27/208 at t = 0.488075704869119285515484767956113771965332978558674...
A(t) = 2/3 and A(t^3) = 8/81 at t = 0.4490656139430636435247188510711544862057647445925319...
A(t) = 1/2 and A(t^3) = 1/20 at t = 0.3627219904933172573963798296372201737748692616169519...
A(t) = 1/3 and A(t^3) = 1/54 at t = 0.2629820536068200748031820994203659473004640287705972...
A(t) = 1/4 and A(t^3) = 1/112 at t = r^3 = 0.206848205250953970652722994332475597057157203674066...
A(t) = 1/5 and A(t^3) = 1/200 at t = 0.170714946526968286919515308872119424149511936479752...
A(1/2) = 0.7765855959847885627987696942587081429921785817514493... where A(1/8) = A(1/2)^3/(1 + 3*A(1/2)).
A(1/3) = 0.4482359377100401660271468423571796863698018480508060... where A(1/27) = A(1/3)^3/(1 + 3*A(1/3)).
A(1/4) = 0.3134295384970268001359461486249333443235800254018265... where A(1/64) = A(1/4)^3/(1 + 3*A(1/4)).
A(1/8) = 0.1406550988235082384593126468031209848166962450443705...
A(1/27) = 0.038408848749171730717291402355749106248762924579924...
A(1/64) = 0.015869141556098751959628853939856842544839850661716...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[0,1]); for(i=1,n, V = concat(V,0); A = Ser(V);
    V[#V] = polcoef( subst(A,x, x^3) - A^3/(1 + 3*A), #V+1)/3; ); V[n+1] }
    for(n=1,54,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n along with series trisections T1(x) = Sum_{n>=0} a(3*n+1)*x^(3*n+1) and T2(x) = Sum_{n>=0} a(3*n+2)*x^(3*n+2) satisfy the following formulas.
(1) A(x^3) = A(x)^3/(1 + 3*A(x)).
(2) a(3*n) = 0 for n >= 1.
(3) T1(x)*T2(x) = A(x^3).
(4) T2(x)/T1(x) = G(x^3)/x^2 where g.f. G(x) of A370446 satisfies G(x)^3 + x^4/G(x)^3 = G(x^3) + x^4/G(x^3) - 3*x^2.
(5) A(-F(-x)) = x where g.f. F(x) of A264228 satisfies F(x)^3 = F( x^3/(1-3*x) ).
Showing 1-7 of 7 results.