A264228
G.f. A(x) satisfies: A(x)^3 = A( x^3/(1-3*x) ), with A(0) = 0.
Original entry on oeis.org
1, 1, 2, 5, 13, 35, 97, 274, 785, 2275, 6656, 19630, 58295, 174175, 523238, 1579584, 4789919, 14584723, 44577799, 136732988, 420784888, 1298937282, 4021383654, 12483820395, 38853994422, 121220646116, 379062880051, 1187912517953, 3730305167438, 11736596024002, 36994041916973, 116807229667919, 369415244627269, 1170113816365089
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 274*x^8 + 785*x^9 + 2275*x^10 + 6656*x^11 + 19630*x^12 + 58295*x^13 + 174175*x^14 + ...
where A(x)^3 = A( x^3/(1-3*x) ).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 28*x^6 + 87*x^7 + 270*x^8 + 839*x^9 + 2610*x^10 + 8127*x^11 + 25331*x^12 + 79035*x^13 + 246852*x^14 + 771808*x^15 + ...
A( x/(1+x+x^2) ) = x + x^4 + 2*x^7 + 6*x^10 + 22*x^13 + 88*x^16 + 367*x^19 + 1570*x^22 + 6843*x^25 + 30271*x^28 + 135530*x^31 + 612852*x^34 + 2794412*x^37 + 12832472*x^40 + ...
Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where
B(x) = 1 + x + x^2 + x^3 - x^5 - x^6 + 2*x^8 + 3*x^9 - 6*x^11 - 9*x^12 + 20*x^14 + 30*x^15 - 71*x^17 - 110*x^18 + 267*x^20 + 419*x^21 - 1041*x^23 + ...
Let C0(x) and C2(x) be series trisections of B(x), B(x) = C0(x) + x + C2(x):
C0(x) = 1 + x^3 - x^6 + 3*x^9 - 9*x^12 + 30*x^15 - 110*x^18 + 419*x^21 - 1648*x^24 + 6652*x^27 - 27369*x^30 + 114384*x^33 - 484276*x^36 + ...
C2(x) = x^2 - x^5 + 2*x^8 - 6*x^11 + 20*x^14 - 71*x^17 + 267*x^20 - 1041*x^23 + 4168*x^26 - 17047*x^29 + 70902*x^32 + ... + (-1)^(n-1)*A370446(n)*x^(3*n-1) + ...
then C0(x) = x^2/C2(x).
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3/(1-3*x +x*O(x^n))) )^(1/3) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
A361763
Expansion of g.f. A(x) satisfying A(x)^3 = A( x^3/(1 - 3*x)^3 ).
Original entry on oeis.org
1, 3, 9, 28, 93, 333, 1271, 5064, 20673, 85460, 355659, 1486719, 6238608, 26278281, 111114558, 471608944, 2008906581, 8586410085, 36816550550, 158332335279, 682843960665, 2952865525730, 12802463157570, 55646477022330, 242465061290160, 1059022767175173, 4636452916770489
Offset: 1
G.f.: A(x) = x + 3*x^2 + 9*x^3 + 28*x^4 + 93*x^5 + 333*x^6 + 1271*x^7 + 5064*x^8 + 20673*x^9 + 85460*x^10 + 355659*x^11 + 1486719*x^12 + ...
where
A( x^3/(1 - 3*x)^3 ) = x^3 + 9*x^4 + 54*x^5 + 273*x^6 + 1269*x^7 + 5670*x^8 + 24957*x^9 + 109593*x^10 + 482598*x^11 + 2133082*x^12 + ...
which equals A(x)^3.
RELATED SERIES.
Notice that the following cube root is an integer series
( A(x)/x )^(1/3) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 197*x^6 + 779*x^7 + 3135*x^8 + 12709*x^9 + 51757*x^10 + ... + A361762(n)*x^n + ...
Also, let B(x) satisfy A(x/B(x)) = x and B(A(x)) = A(x)/x,
then B(x) = x/Series_Reversion(A(x)) is the g.f. of A107092,
B(x) = 1 + 3*x + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18 + 55*x^21 - 142*x^24 + 376*x^27 - 1011*x^30 + ...
such that B(x)^3 = B(x^3) + 3*x,
as shown by the series
B(x)^(1/3) = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 22*x^6 + 55*x^7 - 142*x^8 + 376*x^9 - 1011*x^10 + ...
SPECIFIC VALUES.
A(1/5) = A(1/8)^(1/3) = 0.586384210523490911367880492498...
A(1/5) = (1/5) * (1 - 3/5)^(-1) * (1 - 3/8)^(-1/3) * (1 - 3/125)^(-1/9) * (1 - 3/1815848)^(-1/27) * ...
A(1/6) = A(1/27)^(1/3) = 0.346688997573685318336777346240...
A(1/6) = (1/6) * (1 - 3/6)^(-1) * (1 - 3/27)^(-1/3) * (1 - 3/13824)^(-1/9) * (1 - 3/2640087986661)^(-1/27) * ...
A(1/9) = A(1/216)^(1/3) = 0.16744549995321182031691216552466...
A(1/12) = A(1/729)^(1/3) = 0.11126394649161862248626102306202...
-
{a(n) = my(A=x); for(i=1, #binary(n+1), A = ( subst(A, x, x^3/(1 - 3*x +x*O(x^n))^3 ) )^(1/3) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A264230
G.f. A(x) satisfies: A(x)^3 = A( x^3/(1-9*x) ), with A(0) = 0.
Original entry on oeis.org
1, 3, 18, 127, 957, 7497, 60233, 492558, 4080897, 34152449, 288107376, 2446274610, 20883006135, 179081408925, 1541668556502, 13316391292552, 115359341792511, 1001932660939401, 8722045942211055, 76082885748597996, 664898144584551048, 5820315513644860974, 51026465572312794534, 447965934572491365465, 3937723838880233903750
Offset: 1
G.f.: A(x) = x + 3*x^2 + 18*x^3 + 127*x^4 + 957*x^5 + 7497*x^6 + 60233*x^7 + 492558*x^8 + 4080897*x^9 + 34152449*x^10 + 288107376*x^11 + ...
where A(x)^3 = A( x^3/(1-3*x) ).
RELATED SERIES.
A(x)^3 = x^3 + 9*x^4 + 81*x^5 + 732*x^6 + 6615*x^7 + 59778*x^8 + 540207*x^9 + 4881870*x^10 + 44118351*x^11 + 398712097*x^12 + 3603351699*x^13 + ...
(A(x)/x)^(1/3) = 1 + x + 5*x^2 + 32*x^3 + 225*x^4 + 1672*x^5 + 12873*x^6 + 101574*x^7 + 816050*x^8 + 6647378*x^9 + 54742914*x^10 + 454832564*x^11 + ...
A( x/(1 + 3*x + 9*x^2) ) = x + 19*x^4 + 482*x^7 + 13946*x^10 + 444438*x^13 + 15330112*x^16 + 564221847*x^19 + 21863841462*x^22 + 881431824107*x^25 + 36605787985301*x^28 + 1554163122195738*x^31 + 67078838997215060*x^34 + 2931316135685487004*x^37 + ...
Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where
B(x) = 1 + 3*x + 9*x^2 + 19*x^3 - 171*x^5 - 601*x^6 + 8658*x^8 + 34409*x^9 - 576954*x^11 - 2416249*x^12 + 43795764*x^14 + 188941890*x^15 + ...
Let C0(x) and C2(x) be series trisections of B(x), B(x) = C0(x) + 3*x + C2(x):
C0(x) = 1 + 19*x^3 - 601*x^6 + 34409*x^9 - 2416249*x^12 + 188941890*x^15 - 15788781918*x^18 + ...
C2(x) = 9*x^2 - 171*x^5 + 8658*x^8 - 576954*x^11 + 43795764*x^14 - 3590437581*x^17 + 309719962683*x^20 + ...
then C0(x) = 9*x^2/C2(x).
-
{a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3/(1-9*x +x*O(x^n))) )^(1/3) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments