cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372530 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x)/(1 - A(x)) ).

Original entry on oeis.org

1, 1, 3, 9, 33, 125, 501, 2065, 8739, 37685, 165107, 732681, 3286679, 14878885, 67889851, 311896993, 1441536321, 6698017445, 31269529601, 146601334841, 689945263873, 3258334336349, 15436401872405, 73341269533009, 349381321611505, 1668434132560765, 7985390073708765
Offset: 1

Views

Author

Paul D. Hanna, May 13 2024

Keywords

Comments

Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108):
(1) C(x)^2 = C( x*C(x)*(1 + C(x)) ),
(2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ),
(3) C(x)^8 = C( x*C(x)^7*(1 + C(x))*(1 + C(x)^2)*(1 + C(x)^4) ),
(4) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0.

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 9*x^4 + 33*x^5 + 125*x^6 + 501*x^7 + 2065*x^8 + 8739*x^9 + 37685*x^10 + 165107*x^11 + 732681*x^12 + ...
where A( x*A(x)/(1 - A(x)) ) = A(x)^2.
RELATED SERIES.
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x * Product_{n>=0} (1 - x^(2^n)) = x - x^2 - x^3 + x^4 - x^5 + x^6 + x^7 - x^8 - x^9 + x^10 + x^11 - x^12 + x^13 - x^14 - x^15 + x^16 + ... + (-1)^A010060(n-1) * x^n + ...
thus,
x = A(x) * (1 - A(x)) * (1 - A(x)^2) * (1 - A(x)^4) * (1 - A(x)^8) * (1 - A(x)^16) * ... * (1 - A(x)^(2^n)) * ...
SPECIFIC VALUES.
A(t) = 1/3 at t = (1/3) * Product_{n>=0} (1 - 1/3^(2^n)) = 0.195062471888103139123433255203480726664398592...
A(t) = 1/4 at t = (1/4) * Product_{n>=0} (1 - 1/4^(2^n)) = 0.175091932719784804433277263483089433821043251...
A(1/6) = 0.2285942310240955503097133963953487564542629539800372181...
A(1/7) = 0.1803372891149269875688065840927292319030238580575714990...
A(1/8) = 0.1506715662175837437127190414569072051853697889895576799...
A(1/6)^2 = A(t) at t = (1/6)*A(1/6)/(1 - A(1/6)) = 0.0493891023845...
A(1/7)^2 = A(t) at t = (1/7)*A(1/7)/(1 - A(1/7)) = 0.0314305744685...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0); F=Ser(A);
    A[#A] = polcoeff( subst(F,x, x*F/(1 - F) ) - F^2, #A) ); H=A; A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*A(x)/(1 - A(x)) ).
(2) A(x)^4 = A( x*A(x)^3/((1 - A(x))*(1 - A(x)^2)) ).
(3) A(x)^8 = A( x*A(x)^7/((1 - A(x))*(1 - A(x)^2)*(1 - A(x)^4)) ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1)/Product_{k=0..n-1} (1 - A(x)^(2^k)) ) for n > 0.
(5) A(x) = x / Product_{n>=0} (1 - A(x)^(2^n)).
(6) A(x) = x * Product_{n>=0} (1 + A(x)^(2^n))^(n+1). - Paul D. Hanna, Jun 26 2024
(7) A(x) = Series_Reversion( x * Product_{n>=0} (1 - x^(2^n)) ).
(8) x = Sum_{n>=1} (-1)^A010060(n-1) * A(x)^n, where A010060 is the Thue-Morse sequence.
The radius of convergence r and A(r) satisfy 1 = Sum_{n>=0} 2^n * A(r)^(2^n)/(1 - A(r)^(2^n)) and r = A(r) * Product_{n>=0} (1 - A(r)^(2^n)), where r = 0.19736158352631556925015099049581233030702919287488... and A(r) = 0.37298513723316144189484491702105095014110332846051...
Given r and A(r) above, A(r) also satisfies 1 = Sum_{n>=0} (n+1)*2^n * A(r)^(2^n)/(1 + A(r)^(2^n)). - Paul D. Hanna, Jun 26 2024

A371716 Expansion of g.f. A(x) satisfies A( x*A(x)^3 + x*A(x)^4 ) = A(x)^4.

Original entry on oeis.org

1, 1, 1, 1, 2, 7, 22, 57, 131, 298, 738, 2003, 5600, 15380, 41224, 109769, 296010, 813333, 2261818, 6307070, 17560050, 48877852, 136457322, 382803675, 1078562370, 3047295816, 8623046992, 24432992884, 69345396556, 197211214852, 561975160288, 1604186098089, 4585779820379
Offset: 1

Views

Author

Paul D. Hanna, May 03 2024

Keywords

Comments

Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108):
(1) C(x)^2 = C( x*C(x)*(1 + C(x)) ),
(2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ),
(3) C(x)^8 = C( x*C(x)^7*(1 + C(x))*(1 + C(x)^2)*(1 + C(x)^4) ),
(4) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0.

Examples

			G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 7*x^6 + 22*x^7 + 57*x^8 + 131*x^9 + 298*x^10 + 738*x^11 + 2003*x^12 + 5600*x^13 + 15380*x^14 + ...
where A( x*A(x)^3*(1 + A(x)) ) = A(x)^4.
RELATED SERIES.
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) = x/((1+x)*(1+x^4)*(1+x^16)*(1+x^64)*(1+x^256)*(1+x^1024)*...) = x - x^2 + x^3 - x^4 + x^9 - x^10 + x^11 - x^12 + x^33 - x^34 + ...
We can show that g.f. A(x) = A( x*A(x)^3*(1 + A(x)) )^(1/4) satisfies
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(4^n))
by substituting x*A(x)^3*(1 + A(x)) for x in (4) to obtain
A(x)^4 = x * A(x)^3*(1 + A(x)) * Product_{n>=1} (1 + A(x)^(4^n))
which is equivalent to formula (4).
SPECIFIC VALUES.
A(1/3) = 0.6209428791888803994421374991623399343094...
A(1/4) = 0.3392462304609640143453810140211726768116...
A(1/5) = 0.2512464727722296135954631316870173555867...
A(t) = 1/2 and A(t*3/16) = 1/16 at t = 0.31372070319804379323613829910755157...
A(t) = 1/3 and A(t*4/81) = 1/81 at t = 0.24695121377537689193140239461709572...
A(t) = 1/4 and A(t*5/256) = 1/256 at t = 0.199221789836883544932674834867379...
		

Crossrefs

Programs

  • PARI
    /* Using series reversion of x/Product_{n>=0} (1 + x^(4^n)) */
    {a(n) = my(A); A = serreverse( x/prod(k=0, ceil(log(n)/log(4)), (1 + x^(4^k) +x*O(x^n)) ) ); polcoeff(A, n)}
    for(n=1, 35, print1(a(n), ", "))
    
  • PARI
    /* Using A(x)^4 = A( x*A(x)^3 + x*A(x)^4 ) */
    {a(n) = my(A=[1], F); for(i=1, n, A = concat(A, 0); F = x*Ser(A);
    A[#A] = polcoeff( subst(F, x, x*F^3 + x*F^4 ) - F^4, #A+3) ); A[n]}
    for(n=1, 35, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^4 = A( x*A(x)^3*(1 + A(x)) ).
(2) A(x)^16 = A( x*A(x)^15*(1 + A(x))*(1 + A(x)^4) ).
(3) A(x)^64 = A( x*A(x)^63*(1 + A(x))*(1 + A(x)^4)*(1 + A(x)^16) ).
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(4^n)).
(5) A(x) = Series_Reversion( x / Product_{n>=0} (1 + x^(4^n)) ).
The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} 4^n * A(r)^(4^n) / (1 + A(r)^(4^n)) and r = A(r) / Product_{n>=0} (1 + A(r)^(4^n)), where r = 0.33394799468036632700505690802809657984166722... and A(r) = 0.64588119033501052326223671937159514208118071...

A376230 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ).

Original entry on oeis.org

1, 1, 3, 8, 28, 98, 370, 1423, 5643, 22753, 93299, 387324, 1625768, 6886156, 29399430, 126377000, 546527682, 2376094442, 10379414436, 45532904886, 200511864604, 886055084460, 3927826810396, 17462128520246, 77838085223570, 347813389031746, 1557683052973482, 6990670698115144
Offset: 1

Views

Author

Paul D. Hanna, Sep 23 2024

Keywords

Comments

Compare to C(x)^2 = C( x*C(x) + x*C(x)^2 ) where C(x) = x + C(x)^2 is the g.f. of the Catalan numbers (A000108).
Compare to D(x)^2 = D( x*D(x) + 2*x*D(x)^2 + x*D(x)^3 ) where D(x) = x*F(x)^2 and F(x) = 1 + F(x)^3 is the g.f. of A001764.
It appears that, for n >= 1, a(n) is odd iff n = 4*A000695(k) + {0,1,2,3} for some k >= 0, where A000695 is the Moser-de Bruijn sequence (sums of distinct powers of 4).

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 8*x^4 + 28*x^5 + 98*x^6 + 370*x^7 + 1423*x^8 + 5643*x^9 + 22753*x^10 + 93299*x^11 + 387324*x^12 + ...
where A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ).
RELATED SERIES.
Let B(x) be the g.f. of Stern's diatomic series (A002487):
B(x) = x + x^2 + 2*x^3 + x^4 + 3*x^5 + 2*x^6 + 3*x^7 + x^8 + 4*x^9 + 3*x^10 + 5*x^11 + 2*x^12 + 5*x^13 + 3*x^14 + 4*x^15 + x^16 + ...
then A(x)^2 = x * B( A(x) ) and A( x^2/B(x) ) = x.
Other related series begin as follows.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 81*x^6 + 300*x^7 + 1168*x^8 + 4622*x^9 + 18704*x^10 + 76738*x^11 + 319054*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 43*x^6 + 168*x^7 + 657*x^8 + 2649*x^9 + 10803*x^10 + 44733*x^11 + 187130*x^12 + ...
SPECIFIC VALUES.
A(t) = 2/5 at t = 0.21059927171685797509442589615351221149308548505349232763302...
A(t) = 1/3 at t = 0.20284350479378267499481171039846064829566135845385597426623...
A(t) = 1/4 at t = 0.17791461653470954766421766118399907657065676113208935616640...
A(t) = 1/5 at t = 0.15460046705113920070261079885331294477343970681952336915318...
A(1/5) = 0.31995483821441278259163540295892975411660207078522958569307...
A(1/6) = 0.22418805161328879302723377308422267982113532037722470920139...
A(1/7) = 0.17887744157158359437462802053243127220002079340556427992475...
A(1/8) = 0.15001315387877904231502214457445835910409883718703588438530...
A(1/10) = 0.11423875178408085947774841103426888472717517658954942399943...
		

Crossrefs

Programs

  • PARI
    /* Series_Reversion(x / Product_{n>=0} (1 + x^(2^n) + x^(2^(n+1))) ) */
    {a(n) = my(A = serreverse(x / prod(k=0, #binary(n), (1 + x^(2^k) + x^(2^(k+1))) +x*O(x^n))));  polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    /* A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ) */
    {a(n) = my(A=[1], F); for(i=1, n, A=concat(A, 0); F=x*Ser(A);
    A[#A] = -polcoeff( F^2 - subst(F, x, x*F + x*F^2 + x*F^3), #A+1) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ).
(2) A(x)^4 = A( x*A(x)^3 * (1 + A(x) + A(x)^2) * (1 + A(x)^2 + A(x)^4) ).
(3) A(x)^8 = A( x*A(x)^7 * (1 + A(x) + A(x)^2) * (1 + A(x)^2 + A(x)^4) * (1 + A(x)^4 + A(x)^8) ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1) * Product_{k=0..n-1} (1 + A(x)^(2^k) + A(x)^(2^(k+1))) ) for n > 0.
(5) A(x) = x * Product_{n>=0} (1 + A(x)^(2^n) + A(x)^(2^(n+1))).
(6) A(x) = Series_Reversion(x / Product_{n>=0} (1 + x^(2^n) + x^(2^(n+1))) ).
(7) A( x^2/B(x) ) = x where B(x) is the g.f. of Stern's diatomic series (A002487).
(8) A(x)^2 = x * B( A(x) ) where B(x) is the g.f. of Stern's diatomic series (A002487).
(9) A(x)^2 = x * Sum_{n>=0} A(x)^n * Sum_{k=0..n-1} (binomial(k, n-k-1) mod 2).
The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} (2^n*A(r)^(2^n) + 2^(n+1)*A(r)^(2^(n+1))) / (1 + A(r)^(2^n) + A(r)^(2^(n+1))) and r = A(r) / Product_{n>=0} (1 + A(r)^(2^n) + A(r)^(2^(n+1))), where r = 0.210913447825795710516245118118286786032842961511008744076383999... and A(r) = 0.416616392852528289560364740676108057746635416495044590336240813...
Showing 1-3 of 3 results.