A371709
Expansion of g.f. A(x) satisfying A( x*A(x)^2 + x*A(x)^3 ) = A(x)^3.
Original entry on oeis.org
1, 1, 1, 2, 6, 16, 39, 99, 271, 764, 2157, 6128, 17658, 51534, 151635, 448962, 1337493, 4008040, 12072594, 36524898, 110943633, 338218626, 1034509917, 3173811240, 9763898994, 30113782641, 93094164244, 288415278638, 895332445053, 2784580242557, 8675408291598, 27072326322939
Offset: 1
G.f. A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 16*x^6 + 39*x^7 + 99*x^8 + 271*x^9 + 764*x^10 + 2157*x^11 + 6128*x^12 + 17658*x^13 + 51534*x^14 + 151635*x^15 + 448962*x^16 + ...
where A( x*A(x)^2*(1 + A(x)) ) = A(x)^3.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 17*x^6 + 48*x^7 + 126*x^8 + 332*x^9 + 918*x^10 + 2616*x^11 + 7504*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 36*x^7 + 105*x^8 + 292*x^9 + 801*x^10 + 2256*x^11 + 6515*x^12 + 18981*x^13 + ...
A(x)^2 + A(x)^3 = x^2 + 3*x^3 + 6*x^4 + 12*x^5 + 30*x^6 + 84*x^7 + 231*x^8 + 624*x^9 + 1719*x^10 + 4872*x^11 + 14019*x^12 + 40599*x^13 + ...
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) * (1+x)/(1+x^3) = x - 2*x^4 + 3*x^7 - 5*x^10 + 7*x^13 - 9*x^16 + 12*x^19 - 15*x^22 + 18*x^25 - 23*x^28 + ... + (-1)^n*A005704(n)*x^(3*n+1) + ...
where A005704 is the number of partitions of 3*n into powers of 3.
We can show that g.f. A(x) = A( x*A(x)^2*(1 + A(x)) )^(1/3) satisfies
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(3^n))
by substituting x*A(x)^2*(1 + A(x)) for x in (4) to obtain
A(x)^3 = x * A(x)^2*(1 + A(x)) * Product_{n>=1} (1 + A(x)^(3^n))
which is equivalent to formula (4).
SPECIFIC VALUES.
A(3/10) = 0.526165645044542830201162330432965674027415264612114520...
A(1/4) = 0.353259384374080248921564026412797625837830114153200664...
A(1/5) = 0.255218141344695821239609680309162895225297482063273545...
A(t) = 1/2 and A(t*3/8) = 1/8 at t = (1/2)/Product_{n>=0} (1 + 1/2^(3^n)) = 0.295718718466711580562679377308518930409875701753934072...
A(t) = 1/3 and A(t*4/27) = 1/27 at t = (1/3)/Product_{n>=0} (1 + 1/3^(3^n)) = 0.241059181496179959557718992589733756750585121455883861...
A(t) = 1/4 and A(t*5/64) = 1/64 at t = (1/4)/Product_{n>=0} (1 + 1/4^(3^n)) = 0.196922325724019432212969925740117827612003158137366017...
-
/* Using series reversion of x/Product_{n>=0} (1 + x^(3^n)) */
{a(n) = my(A); A = serreverse( x/prod(k=0,ceil(log(n)/log(3)), (1 + x^(3^k) +x*O(x^n)) ) ); polcoeff(A,n)}
for(n=1,35, print1(a(n),", "))
-
/* Using A(x)^3 = A( x*A(x)^2 + x*A(x)^3 ) */
{a(n) = my(A=[1],F); for(i=1,n, A = concat(A,0); F = x*Ser(A);
A[#A] = polcoeff( subst(F,x, x*F^2 + x*F^3 ) - F^3, #A+2) ); A[n]}
for(n=1,35, print1(a(n),", "))
A372534
Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x) + 3*x*A(x)^2 ).
Original entry on oeis.org
1, 3, 12, 63, 372, 2322, 15102, 101439, 698340, 4900914, 34931808, 252185238, 1840242546, 13551558336, 100579610790, 751610709279, 5650352546628, 42702935642082, 324256445598816, 2472613511240754, 18926918200655928, 145379893260849876, 1120198916414984148, 8656357557290045382
Offset: 1
G.f.: A(x) = x + 3*x^2 + 12*x^3 + 63*x^4 + 372*x^5 + 2322*x^6 + 15102*x^7 + 101439*x^8 + 698340*x^9 + 4900914*x^10 + 34931808*x^11 + 252185238*x^12 + ...
where A(x)^2 = A( x*A(x) + 3*x*A(x)^2 ).
Also,
A(x) = x * (1 + 3*A(x)) * (1 + 3*A(x)^2) * (1 + 3*A(x)^4) * (1 + 3*A(x)^8) * (1 + 3*A(x)^16) * ... * (1 + 3*A(x)^(2^n)) * ...
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 33*x^4 + 198*x^5 + 1266*x^6 + 8388*x^7 + 57033*x^8 + 396090*x^9 + 2798718*x^10 + 20056824*x^11 + 145438146*x^12 + ...
x*A(x) + 3*x*A(x)^2 = x^2 + 6*x^3 + 30*x^4 + 162*x^5 + 966*x^6 + 6120*x^7 + 40266*x^8 + 272538*x^9 + 1886610*x^10 + 13297068*x^11 + ...
SPECIFIC VALUES.
A(1/9) = 0.20017482594200170883488591841314367600913783...
A(1/10) = 0.15939222988059047986391116283589184626082823...
A(1/11) = 0.13474373940944085584086064879196682498369755...
A(1/12) = 0.11741441277153705906655653078308588616286400...
-
{a(n) = my(A = serreverse( x/prod(k=0, #binary(n), 1 + 3*x^(2^k) +x*O(x^n)) ));
polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
-
{a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0); F=Ser(A);
A[#A] = polcoeff( subst(F, x, x*F*(1 + 3*F) ) - F^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A372526
Expansion of g.f. A(x) satisfying A( x*A(x)^2 + A(x)^4 ) = A(x)^3.
Original entry on oeis.org
1, 1, 2, 6, 20, 70, 256, 969, 3762, 14895, 59916, 244179, 1006026, 4183396, 17534888, 74007851, 314256048, 1341575769, 5754629794, 24789907450, 107202369386, 465209278326, 2025212712660, 8842042378050, 38707067608872, 169860383434800, 747096961093560, 3292855742992644
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 70*x^6 + 256*x^7 + 969*x^8 + 3762*x^9 + 14895*x^10 + 59916*x^11 + 244179*x^12 + ...
where A( x*A(x)^2 + A(x)^4 ) = A(x)^3.
RELATED SERIES.
(1) A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 31*x^6 + 114*x^7 + 432*x^8 + 1676*x^9 + 6633*x^10 + 26676*x^11 + 108696*x^12 + ...
(2) x*A(x)^2 + A(x)^4 = x^3 + 3*x^4 + 9*x^5 + 30*x^6 + 108*x^7 + 405*x^8 + 1560*x^9 + 6138*x^10 + 24570*x^11 + 99738*x^12 + ...
(3) Let R(x) be the series reversion of A(x), R(A(x)) = x, then
R(x) = x - x^2 - x^4 - x^10 - x^28 - x^82 - x^244 - x^730 + ... + -x^(3^n+1) + ...
SPECIFIC VALUES.
A(1/5) = 0.2937167157779136500722875625899113632023...
A(1/6) = 0.2150539986528250703029216090552606059919...
A(1/7) = 0.1740789503092637057579787813575613522976...
A(1/8) = 0.1471095742959948638409574049543396207684...
-
/* Using series reversion of x - x*Sum_{n>=0} x^(3^n) */
{a(n) = my(A); A = serreverse( x - x*sum(k=0, ceil(log(n)/log(3)), x^(3^k) +x*O(x^n)) ); polcoeff(A, n)}
for(n=1, 35, print1(a(n), ", "))
-
/* Using A(x)^3 = A( x*A(x)^2 + A(x)^4 ) */
{a(n) = my(A=[1], F); for(i=1, n, A = concat(A, 0); F = x*Ser(A);
A[#A] = polcoeff( subst(F, x, x*F^2 + F^4 ) - F^3, #A+2) ); A[n]}
for(n=1, 35, print1(a(n), ", "))
A376230
Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ).
Original entry on oeis.org
1, 1, 3, 8, 28, 98, 370, 1423, 5643, 22753, 93299, 387324, 1625768, 6886156, 29399430, 126377000, 546527682, 2376094442, 10379414436, 45532904886, 200511864604, 886055084460, 3927826810396, 17462128520246, 77838085223570, 347813389031746, 1557683052973482, 6990670698115144
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 8*x^4 + 28*x^5 + 98*x^6 + 370*x^7 + 1423*x^8 + 5643*x^9 + 22753*x^10 + 93299*x^11 + 387324*x^12 + ...
where A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ).
RELATED SERIES.
Let B(x) be the g.f. of Stern's diatomic series (A002487):
B(x) = x + x^2 + 2*x^3 + x^4 + 3*x^5 + 2*x^6 + 3*x^7 + x^8 + 4*x^9 + 3*x^10 + 5*x^11 + 2*x^12 + 5*x^13 + 3*x^14 + 4*x^15 + x^16 + ...
then A(x)^2 = x * B( A(x) ) and A( x^2/B(x) ) = x.
Other related series begin as follows.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 81*x^6 + 300*x^7 + 1168*x^8 + 4622*x^9 + 18704*x^10 + 76738*x^11 + 319054*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 43*x^6 + 168*x^7 + 657*x^8 + 2649*x^9 + 10803*x^10 + 44733*x^11 + 187130*x^12 + ...
SPECIFIC VALUES.
A(t) = 2/5 at t = 0.21059927171685797509442589615351221149308548505349232763302...
A(t) = 1/3 at t = 0.20284350479378267499481171039846064829566135845385597426623...
A(t) = 1/4 at t = 0.17791461653470954766421766118399907657065676113208935616640...
A(t) = 1/5 at t = 0.15460046705113920070261079885331294477343970681952336915318...
A(1/5) = 0.31995483821441278259163540295892975411660207078522958569307...
A(1/6) = 0.22418805161328879302723377308422267982113532037722470920139...
A(1/7) = 0.17887744157158359437462802053243127220002079340556427992475...
A(1/8) = 0.15001315387877904231502214457445835910409883718703588438530...
A(1/10) = 0.11423875178408085947774841103426888472717517658954942399943...
-
/* Series_Reversion(x / Product_{n>=0} (1 + x^(2^n) + x^(2^(n+1))) ) */
{a(n) = my(A = serreverse(x / prod(k=0, #binary(n), (1 + x^(2^k) + x^(2^(k+1))) +x*O(x^n)))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
-
/* A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ) */
{a(n) = my(A=[1], F); for(i=1, n, A=concat(A, 0); F=x*Ser(A);
A[#A] = -polcoeff( F^2 - subst(F, x, x*F + x*F^2 + x*F^3), #A+1) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments