A261246 Positive integers D such that the generalized Pell equation X^2 - D Y^2 = 2 is soluble.
2, 7, 14, 23, 31, 34, 46, 47, 62, 71, 79, 94, 98, 103, 119, 127, 142, 151, 158, 167, 191, 194, 199, 206, 223, 238, 239, 254, 263, 271, 287, 302, 311, 322, 334, 343, 359, 367, 382, 383, 386, 391, 398, 431, 439, 446, 463, 478, 479, 482, 487, 503, 511
Offset: 1
Keywords
Examples
The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)): [2, [2, 1]], [7, [3, 1]], [14, [4, 1]], [23, [5, 1]], [31, [39, 7]], [34, [6, 1]], [46, [156, 23]], [47, [7, 1]], [62, [8, 1]], [71, [59, 7]], [79, [9, 1]], [94, [1464, 151]], [98, [10, 1]], [103, [477, 47]], [119, [11, 1]], [127, [2175, 193]], [142, [12, 1]], [151, [41571, 3383]], [158, [88, 7]], [167, [13, 1]], [191, [2999, 217]], [194, [14, 1]], [199, [127539, 9041]], [206, [244, 17]], [223, [15, 1]], [238, [108, 7]], [239, [2489, 161]], ...
References
- J. W. S. Cassels, Rational Quadratic Forms, Cambridge, 1978; see Chap. 3.
- V. M. Galkin, O. R. Kozyrev, On an algebraic problem of Ramanujan, pp. 89-94 in Number Theoretic And Algebraic Methods In Computer Science - Proceedings Of The International Conference, Moscow 1993, Ed. Horst G. Zimmer, World Scientific, 31 Aug 1995
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000 (terms n = 1..1000 from Giovanni Resta).
- Dario Alpern, Generic two integer variable equation solver.
- Wolfdieter Lang, Binary Quadratic Forms (indefinite case).
Crossrefs
Programs
-
Mathematica
Select[Range[600], False =!= Reduce[x^2 - # y^2 == 2, {x, y}, Integers] &] (* Giovanni Resta, Aug 12 2017 *)
Comments