cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264390 Partial sums of A267326.

Original entry on oeis.org

8, 32, 136, 160, 408, 720, 1176, 1200, 2168, 2912, 3976, 4288, 5752, 7120, 10344, 10368, 12824, 15728, 18776, 19520, 25448, 28640, 33064, 33376, 39624, 44016, 52760, 54128, 61096, 70768, 78712, 78736, 92568, 99936, 114072, 116976, 128232, 137376, 156408
Offset: 1

Views

Author

Christopher Heiling, Jan 12 2016

Keywords

Examples

			For n = 2 the a(n) = 32 integral solutions of x^2 + y^2 + z^2 + t^2 <= 2^2 are: {x,y,z,t} = {{0,0,0,1}; {0,0,1,0}; {0,1,0,0}; {1,0,0,0}; {0,0,0,-1}; {0,0,-1,0}; {0,-1,0,0}; {-1,0,0,0}; {0,0,0,2}; {0,0,0,-2}; {0,0,2,0}; {0,0,-2,0}; {0,2,0,0}; {0,-2,0,0}; {2,0,0,0}; {-2,0,0,0}; {1,1,1,1}; {1,1,1,-1}; {1,1,-1,1}; {1,-1,1,1}; {-1,1,1,1}; {1,1,-1,-1}; {1,-1,1,-1}; {-1,1,1,-1}; {1,-1,-1,1}; {-1,1,-1,1}; {1,-1,-1,-1}; {-1,1,-1,-1}; {-1,-1,1,-1}; {-1,-1,1,-1}; {-1,-1,-1,1}; {-1,-1,-1,-1}}.
		

Crossrefs

Partial sums of A267326.

Programs

  • Maple
    #A264390
    terms := 42:
    (add(q^(m^2), m = -terms..terms))^4:
    seq(add(coeff(%, q, k^2), k = 1..n), n = 1..terms); # Peter Bala, Jan 15 2016
  • PARI
    a000118(k) = if(k<1, k==0, 8 * sumdiv( k, d, if( d%4, d)));
    a(n) = sum(k=1, n, a000118(k^2)); \\ Altug Alkan, Jan 19 2016

Formula

a(n) = Sum_{k = 1..n} A000118(k^2).