A264392 Number of perfect cube parts in all partitions of n.
0, 1, 2, 4, 7, 12, 19, 30, 46, 68, 99, 142, 200, 279, 384, 523, 707, 946, 1256, 1656, 2169, 2822, 3652, 4699, 6017, 7666, 9725, 12282, 15452, 19362, 24176, 30080, 37307, 46117, 56843, 69854, 85613, 104640, 127578, 155150, 188249, 227872, 275242, 331738, 399027, 478988
Offset: 0
Keywords
Examples
a(4) = 7 because the partitions of 4 are [4],[3,1'],[2,2],[2,1',1'], and [1',1',1',1'], where the perfect cube parts are marked.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A264391.
Programs
-
Maple
h := proc (i) options operator, arrow: i^3 end proc: g := (sum(x^h(i)/(1-x^h(i)), i = 1 .. 100))/(product(1-x^i, i = 1 .. 100)): hser := series(g, x = 0, 55): seq(coeff(hser, x, n), n = 0 .. 50);
-
Mathematica
cnt[P_List] := Count[P, p_ /; IntegerQ[p^(1/3)]]; a[n_] := a[n] = cnt /@ IntegerPartitions[n] // Total; Table[Print[n, " ", a[n]]; a[n], {n, 0, 50}]; (* or: *) m = 50; CoefficientList[Sum[x^(i^3)/(1 - x^(i^3)), {i, 1, m^(1/3) // Ceiling}]/ Product[1 - x^i, {i, 1, m}] + O[x]^m, x] (* Jean-François Alcover, Nov 14 2020 *)
Formula
G.f.: ( Sum_{i>0} x^(h(i))/(1-x^(h(i))) ) / ( Product_{i>0} 1-x^i ), where h(i) = i^3.
Comments