cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264392 Number of perfect cube parts in all partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 19, 30, 46, 68, 99, 142, 200, 279, 384, 523, 707, 946, 1256, 1656, 2169, 2822, 3652, 4699, 6017, 7666, 9725, 12282, 15452, 19362, 24176, 30080, 37307, 46117, 56843, 69854, 85613, 104640, 127578, 155150, 188249, 227872, 275242, 331738, 399027, 478988
Offset: 0

Views

Author

Emeric Deutsch, Nov 13 2015

Keywords

Comments

a(n) = Sum_{k=0..n} k*A264391(n,k).

Examples

			a(4) = 7 because the partitions of 4 are [4],[3,1'],[2,2],[2,1',1'], and  [1',1',1',1'], where the perfect cube parts are marked.
		

Crossrefs

Cf. A264391.

Programs

  • Maple
    h := proc (i) options operator, arrow: i^3 end proc: g := (sum(x^h(i)/(1-x^h(i)), i = 1 .. 100))/(product(1-x^i, i = 1 .. 100)): hser := series(g, x = 0, 55): seq(coeff(hser, x, n), n = 0 .. 50);
  • Mathematica
    cnt[P_List] := Count[P, p_ /; IntegerQ[p^(1/3)]];
    a[n_] := a[n] = cnt /@ IntegerPartitions[n] // Total;
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 50}];
    (* or: *)
    m = 50;
    CoefficientList[Sum[x^(i^3)/(1 - x^(i^3)), {i, 1, m^(1/3) // Ceiling}]/ Product[1 - x^i, {i, 1, m}] + O[x]^m, x] (* Jean-François Alcover, Nov 14 2020 *)

Formula

G.f.: ( Sum_{i>0} x^(h(i))/(1-x^(h(i))) ) / ( Product_{i>0} 1-x^i ), where h(i) = i^3.