cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A264391 Triangle read by rows: T(n,k) is the number of partitions of n having k perfect cube parts (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 4, 2, 2, 1, 1, 0, 1, 4, 4, 2, 2, 1, 1, 0, 1, 6, 5, 4, 2, 2, 1, 1, 0, 1, 8, 6, 5, 4, 2, 2, 1, 1, 0, 1, 11, 9, 6, 5, 4, 2, 2, 1, 1, 0, 1, 13, 12, 9, 6, 5, 4, 2, 2, 1, 1, 0, 1, 19, 15, 12, 9, 6, 5, 4, 2, 2, 1, 1, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Nov 13 2015

Keywords

Comments

Sum of entries in row n = A000041(n) = number of partitions of n.
T(n,0) = A264393(n).
Sum_{k=0..n}k*T(n,k) = A264392(n) = total number of perfect cube parts in all partitions of n.

Examples

			T(7,1) = 4 because we have [6,1],[4,2,1],[3,3,1], and [2,2,2,1] (the partitions of 7 that have 1 perfect cube part).
Triangle starts:
  1;
  0, 1;
  1, 0, 1;
  1, 1, 0, 1;
  2, 1, 1, 0, 1;
  2, 2, 1, 1, 0, 1;
		

Crossrefs

Programs

  • Maple
    h := proc (i) options operator, arrow: i^3 end proc: g := product((1-x^h(i))/((1-x^i)*(1-t*x^h(i))), i = 1 .. 80): gser := simplify(series(g, x = 0, 30)): for n from 0 to 18 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 18 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    q:= proc(n) option remember; `if`(n=iroot(n, 3)^3, 1, 0) end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+x^q(i)*b(n-i, min(i, n-i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Nov 14 2020
  • Mathematica
    cnt[P_List] := Count[P, p_ /; IntegerQ[p^(1/3)]];
    cnts[n_] := cnts[n] = cnt /@ IntegerPartitions[n];
    T[n_, k_] := Count[cnts[n], k];
    Table[T[n, k], {n, 0, 18}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2020 *)

Formula

G.f.: G(t,x) = Product_{i>=1} (1-x^h(i))/((1-x^i)*(1-t*x^h(i))), where h(i) = i^3.

A342229 Total sum of parts which are cubes in all partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 19, 30, 53, 75, 113, 163, 235, 328, 461, 628, 868, 1163, 1564, 2069, 2743, 3578, 4674, 6036, 7795, 9962, 12728, 16151, 20441, 25714, 32290, 40332, 50292, 62405, 77288, 95339, 117382, 143987, 176298, 215168, 262121, 318385, 386043, 466838, 563577, 678712
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2021

Keywords

Examples

			For n = 4 we have:
--------------------------------
Partitions        Sum of parts
.               which are cubes
--------------------------------
4 ................... 0
3 + 1 ............... 1
2 + 2 ............... 0
2 + 1 + 1 ........... 2
1 + 1 + 1 + 1 ....... 4
--------------------------------
Total ............... 7
So a(4) = 7.
		

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[k^3 x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/3)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 45}]

Formula

G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)) / Product_{j>=1} (1 - x^j).
a(n) = Sum_{k=1..n} A113061(k) * A000041(n-k).
Showing 1-2 of 2 results.