A264433 Triangle read by rows, Bell transform of the third-order Bell numbers, T(n,k) for n >= 0 and 0 <= k <= n.
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 119, 274, 225, 85, 15, 1, 0, 700, 1757, 1624, 735, 175, 21, 1, 0, 4748, 12880, 13104, 6769, 1960, 322, 28, 1, 0, 36403, 106068, 117152, 67200, 22449, 4536, 546, 36, 1, 0, 310851, 968206, 1150050, 720020, 269115, 63273, 9450, 870, 45, 1
Offset: 0
Examples
[1] [0, 1] [0, 1, 1] [0, 2, 3, 1] [0, 6, 11, 6, 1] [0, 24, 50, 35, 10, 1] [0, 119, 274, 225, 85, 15, 1] [0, 700, 1757, 1624, 735, 175, 21, 1] [0, 4748, 12880, 13104, 6769, 1960, 322, 28, 1] [0, 36403, 106068, 117152, 67200, 22449, 4536, 546, 36, 1]
Programs
-
Sage
# uses[bell_transform from A264428] def A264433_triangle(dim): uno = [1]*dim bell_number = [sum(bell_transform(n, uno)) for n in range(dim)] bell_number_2 = [sum(bell_transform(n, bell_number)) for n in range(dim)] bell_number_3 = [sum(bell_transform(n, bell_number_2)) for n in range(dim)] for n in range(dim): print(bell_transform(n, bell_number_3)) A264433_triangle(10)
Extensions
More terms from Michel Marcus, Mar 27 2020