A264542 a(n) = denominator(Jtilde3(n)).
1, 2, 96, 17280, 860160, 774144000, 408748032000, 347163328512000, 266621436297216000, 163172319013896192000, 67488959156767948800, 14865958099336613068800, 785345441564243189248819200, 530893518497428395932201779200, 2831432098652951444971742822400, 221701133324526098141287462993920000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..345
- Takashi Ichinose, Masato Wakayama, Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations, Kyushu Journal of Mathematics, Vol. 59 (2005) No. 1 p. 39-100.
- Kazufumi Kimoto, Masato Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators, Kyushu Journal of Mathematics, Vol. 60 (2006) No. 2 p. 383-404 (see Table 2).
Crossrefs
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Mathematica
Denominator[Table[-2*Sum[(-1)^k*Binomial[-1/2, k]^2*Binomial[n, k]* Sum[1/(Binomial[-1/2, j]^2*(2*j + 1)^3), {j, 0, k - 1}], {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Oct 23 2017 *)
-
PARI
a(n) = denominator(-2*sum(k=0, n, (-1)^k*binomial(-1/2, k)^2*binomial(n, k)*sum(j=0, k-1, 1/(binomial(-1/2,j)^2*(2*j+1)^3))));
Formula
Jtilde3(n) = J3(n) - J3(0)*Jtilde2(n) (normalization).
4n^2*J3(n) - (8n^2-8n+3)*J3(n-1) + 4(n-1)^2*J3(n-2) = 2^n*(n-1)!/(2n-1)!! with J3(0)=7*zeta(3) and J3(1)=21*zeta(3)/4 + 1/2.
Comments