cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264613 Numbers n such that the Shevelev polynomial {m, n} has a root at m = -1.

Original entry on oeis.org

2, 5, 8, 11, 23, 32, 47, 95, 128, 191, 383, 512, 767, 1535, 2048, 3071, 6143, 8192, 12287, 24575, 32768, 49151, 98303, 131072, 196607, 393215, 524288, 786431, 1572863, 2097152, 3145727, 6291455, 8388608
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2015

Keywords

Comments

From Peter J. C. Moses, Dec 12 2015: (Start)
This appears to split into 3 sequences:
b(n) = 3*4^(n-1)-1, n>=1: 2,11,47,191,767,3071,12287,49151,...,
c(n) = 3*2^(2*n-1)-1, n>=1: 5,23,95,383,1535,6143,24575,98303,...,
d(n) = 2^(2*n+1), n>=1: 8,32,128,512,2048,8192,32768,...;
If this is true, then the next few terms of the sequence are 12582911, 25165823, 33554432, 50331647, 100663295, ...
(End)

Crossrefs

Cf. A133457 (positive integer roots of {m,n}), A263848.

Programs

  • Mathematica
    upDown[n_, k_] := upDown[n, k] = Module[{t, m}, t = Flatten[ Reverse[ Position[ Reverse[ IntegerDigits[k, 2]], 1]]]; m = Length[t]; (-1)^m + Sum[upDown[t[[j]], k - 2^(t[[j]] - 1)]*Binomial[n, t[[j]]], {j, 1, m}]];
    Reap[For[k = 2, k <= 2^15, k++, If[(upDown[n, k] /. n -> -1) == 0, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Sep 06 2018 *)

Formula

Conjectured g.f.: (2 + x*(5 + x*(8 + x*(1 + (-2 - 8*x)* x)))) / (1 + x^3*(-5 + 4*x^3)). - Peter J. C. Moses, Dec 12 2015

Extensions

More terms (starting at a(6)) from Peter J. C. Moses, Dec 12 2015