cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A029931 If 2n = Sum 2^e_i, a(n) = Sum e_i.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 11, 12, 13, 14, 14, 15, 16, 17, 15, 16, 17, 18, 18, 19, 20, 21, 7, 8, 9, 10, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16
Offset: 0

Views

Author

Keywords

Comments

Write n in base 2, n = sum b(i)*2^(i-1), then a(n) = sum b(i)*i. - Benoit Cloitre, Jun 09 2002
May be regarded as a triangular array read by rows, giving weighted sum of compositions in standard order. The standard order of compositions is given by A066099. - Franklin T. Adams-Watters, Nov 06 2006
Sum of all positive integer roots m_i of polynomial {m,k} - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
Also the sum of binary indices of n, where a binary index of n (A048793) is any position of a 1 in its reversed binary expansion. For example, the binary indices of 11 are {1,2,4}, so a(11) = 7. - Gus Wiseman, May 22 2024

Examples

			14 = 8+4+2 so a(7) = 3+2+1 = 6.
Composition number 11 is 2,1,1; 1*2+2*1+3*1 = 7, so a(11) = 7.
The triangle starts:
  0
  1
  2 3
  3 4 5 6
The reversed binary expansion of 18 is (0,1,0,0,1) with 1's at positions {2,5}, so a(18) = 2 + 5 = 7. - _Gus Wiseman_, Jul 22 2019
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031.
Cf. A001793 (row sums), A011782 (row lengths), A059867, A066099, A124757.
Row sums of A048793 and A272020.
Contains exactly A000009(n) copies of n.
For length instead of sum we have A000120, complement A023416.
For minimum instead of sum we have A001511, opposite A000012.
For maximum instead of sum we have A029837 or A070939, opposite A070940.
For product instead of sum we have A096111.
The reverse version is A230877, row sums of A371572.
The reverse complement is A359359, row sums of A371571.
The complement is A359400, row sums of A368494.
Numbers k such that a(k) is prime are A372689.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, inverse A048675.
A372471 lists binary indices of primes, row-sums A372429.

Programs

  • Haskell
    a029931 = sum . zipWith (*) [1..] . a030308_row
    -- Reinhard Zumkeller, Feb 28 2014
    
  • Maple
    HammingWeight := n -> add(i, i = convert(n, base, 2)):
    a := proc(n) option remember; `if`(n = 0, 0,
    ifelse(n::even, a(n/2) + HammingWeight(n/2), a(n-1) + 1)) end:
    seq(a(n), n = 0..78); # Peter Luschny, Oct 30 2021
  • Mathematica
    a[n_] := (b = IntegerDigits[n, 2]).Reverse @ Range[Length @ b]; Array[a,78,0] (* Jean-François Alcover, Apr 28 2011, after B. Cloitre *)
  • PARI
    for(n=0,100,l=length(binary(n)); print1(sum(i=1,l, component(binary(n),i)*(l-i+1)),","))
    
  • PARI
    a(n) = my(b=binary(n)); b*-[-#b..-1]~; \\ Ruud H.G. van Tol, Oct 17 2023
    
  • Python
    def A029931(n): return sum(i if j == '1' else 0 for i, j in enumerate(bin(n)[:1:-1],1)) # Chai Wah Wu, Dec 20 2022
    (C#)
    ulong A029931(ulong n) {
        ulong result = 0, counter = 1;
        while(n > 0) {
            if (n % 2 == 1)
              result += counter;
            counter++;
            n /= 2;
        }
        return result;
    } // Frank Hollstein, Jan 07 2023

Formula

a(n) = a(n - 2^L(n)) + L(n) + 1 [where L(n) = floor(log_2(n)) = A000523(n)] = sum of digits of A048794 [at least for n < 512]. - Henry Bottomley, Mar 09 2001
a(0) = 0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n) + 1, where e1(n) = A000120(n). a(n) = log_2(A029930(n)). - Ralf Stephan, Jun 19 2003
G.f.: (1/(1-x)) * Sum_{k>=0} (k+1)*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000027(k+1). - Philippe Deléham, Oct 15 2011
a(n) = sum of n-th row of the triangle in A213629. - Reinhard Zumkeller, Jun 17 2012
From Reinhard Zumkeller, Feb 28 2014: (Start)
a(A089633(n)) = n and a(m) != n for m < A089633(n).
a(n) = Sum_{k=1..A070939(n)} k*A030308(n,k-1). (End)
a(n) = A073642(n) + A000120(n). - Peter Kagey, Apr 04 2016

Extensions

More terms from Erich Friedman

A133457 Irregular triangle read by rows: row n gives exponents in expression for n as a sum of powers of 2.

Original entry on oeis.org

0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2, 3, 0, 3, 1, 3, 0, 1, 3, 2, 3, 0, 2, 3, 1, 2, 3, 0, 1, 2, 3, 4, 0, 4, 1, 4, 0, 1, 4, 2, 4, 0, 2, 4, 1, 2, 4, 0, 1, 2, 4, 3, 4, 0, 3, 4, 1, 3, 4, 0, 1, 3, 4, 2, 3, 4, 0, 2, 3, 4, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 5, 1, 5, 0, 1, 5, 2, 5, 0, 2, 5, 1, 2, 5, 0, 1, 2, 5, 3, 5, 0, 3, 5
Offset: 1

Views

Author

Masahiko Shin, Nov 27 2007

Keywords

Comments

This sequence contains every increasing finite sequence. For example, the finite sequence {0,2,3,5} arises from n = 45.
Essentially A030308(n,k)*k, then entries removed where A030308(n,k)=0. - R. J. Mathar, Nov 30 2007
In the corresponding irregular triangle {a(n)+1}, the m-th row gives all positive integer roots m_i of polynomial {m,k}. - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015

Examples

			1 = 2^0.
2 = 2^1.
3 = 2^0 + 2^1.
4 = 2^2.
5 = 2^0 + 2^2.
etc. and reading the exponents gives the rows of the triangle.
		

Crossrefs

Cf. A073642 (row sums), A272011 (rows reversed).

Programs

  • Haskell
    a133457 n k = a133457_tabf !! (n-1) !! n
    a133457_row n = a133457_tabf !! (n-1)
    a133457_tabf = map (fst . unzip . filter ((> 0) . snd) . zip [0..]) $
                       tail a030308_tabf
    -- Reinhard Zumkeller, Oct 28 2013, Feb 06 2013
  • Maple
    A133457 := proc(n) local a,bdigs,i ; a := [] ; bdigs := convert(n,base,2) ; for i from 1 to nops(bdigs) do if op(i,bdigs) <> 0 then a := [op(a),i-1] ; fi ; od: a ; end: seq(op(A133457(n)),n=1..80) ; # R. J. Mathar, Nov 30 2007
  • Mathematica
    Array[Join @@ Position[#, 1] - 1 &@ Reverse@ IntegerDigits[#, 2] &, 41] // Flatten (* Michael De Vlieger, Oct 08 2017 *)

Formula

a(n) = A048793(n) - 1.

Extensions

More terms from R. J. Mathar, Nov 30 2007

A263848 Irregular triangle read by rows: row n gives coefficients of basis polynomial {n,k} expressed in terms of binomial coefficients, high order terms first.

Original entry on oeis.org

1, 1, -1, 1, 0, -1, 1, -1, 1, 1, 0, 0, -1, 2, 0, -1, 1, 2, -1, 0, 1, 1, -1, 1, -1, 1, 0, 0, 0, -1, 3, 0, 0, -1, 1, 5, 0, -1, 0, 1, 3, 0, -1, 1, -1, 3, -1, 0, 0, 1, 5, -2, 0, 1, -1, 3, -2, 1, 0, -1, 1, -1, 1, -1, 1, 1, 0, 0, 0, 0, -1, 4, 0, 0, 0, -1, 1, 9, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2015

Keywords

Examples

			Triangle begins:
  1,
  1, -1,
  1,  0, -1,
  1, -1,  1,
  1,  0,  0, -1,
  2,  0, -1,  1,
  2, -1,  0,  1,
  1, -1,  1, -1,
  1,  0,  0,  0, -1,
  3,  0,  0, -1,  1,
  ...
		

Crossrefs

Extensions

More terms from Peter J. C. Moses, Dec 12 2015
Showing 1-3 of 3 results.