cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 313 results. Next

A283981 a(n) = A029931(n) - A280700(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 3, 3, 3, 0, 4, 4, 4, 4, 4, 6, 7, 0, 5, 5, 5, 5, 5, 7, 8, 5, 5, 8, 9, 8, 9, 11, 11, 0, 6, 6, 6, 6, 6, 8, 9, 6, 6, 9, 10, 9, 10, 12, 12, 6, 6, 10, 11, 10, 11, 13, 13, 10, 11, 14, 14, 14, 14, 14, 17, 0, 7, 7, 7, 7, 7, 9, 10, 7, 7, 10, 11, 10, 11, 13, 13, 7, 7, 11, 12, 11, 12, 14, 14, 11, 12, 15, 15, 15, 15, 15, 18, 7, 7, 12, 13, 12, 13, 15, 15, 12
Offset: 0

Views

Author

Antti Karttunen, Mar 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[#.Reverse@ Range@ Length@ # &@ IntegerDigits[n, 2] - DigitCount[2 n - DigitCount[2 n, 2, 1], 2, 1], {n, 0, 120}] (* Michael De Vlieger, Mar 20 2017, after Jean-François Alcover at A029931 *)
  • PARI
    a(n) = if(n<1, 0, a(n - 2^logint(n,2)) + logint(n,2) + 1);
    b(n) = if(n<1, 0, b(n\2) + n%2);
    A(n) = b(2*n - b(2*n));
    for(n=0, 150, print1(a(n) - A(n),", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    import math
    def L(n): return int(math.floor(math.log(n,2)))
    def a(n): return 0 if n<1 else a(n - 2**L(n)) + L(n) + 1
    def A(n): return bin(2*n - bin(2*n)[2:].count("1"))[2:].count("1")
    print([a(n) - A(n) for n in range(151)]) # Indranil Ghosh, Mar 21 2017
  • Scheme
    (define (A283981 n) (- (A029931 n) (A280700 n)))
    

Formula

a(n) = A029931(n) - A280700(n).
a(n) = A283982(n) + A124757(n).

A087810 First differences of A029931.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -5, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -9, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -5, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -14, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -5, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0
Offset: 1

Views

Author

Ralf Stephan, Oct 16 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[ Table[ (bits = IntegerDigits[n, 2]) . Reverse[ Range[ Length[bits]]], {n, 0, 92}]] (* Jean-François Alcover, Sep 03 2012 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,if(n%4,1,1-valuation(n,2)*(valuation(n,2)-1)/2),1))
    
  • PARI
    a(n)=polcoeff(sum(k=0, floor(log(n)/log(2)), (k+1)*x^2^k/(1+x^2^k)) + O(x^(n+1)), n)
    
  • Scheme
    (define (A087810 n) (- (A029931 n) (A029931 (- n 1))))
    (define (A029931 n) (let loop ((n n) (i 1) (s 0)) (cond ((zero? n) s) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (+ s i))) (else (loop (/ n 2) (+ 1 i) s)))))
    ;; Antti Karttunen, Nov 18 2017

Formula

a(4n) = 1 - T(v_2(n)), else a(n) = 1, where T = A000217 (triangular numbers) and v_2 = A007814 (exponent of 2 in factorization of n).
G.f.: Sum_{k>=0} (k+1)t/(1+t), where t = x^2^k.
Multiplicative with a(2^e) = 1 - A000217(e-1), a(p^e) = 1 otherwise. - Mitch Harris, May 17 2005
Dirichlet g.f.: zeta(s) * (1 - 1/(2^s-1)^2). - Amiram Eldar, Oct 31 2023

A371732 Numbers n such that each binary index k (from row n of A048793) has the same sum of binary indices A029931(k).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 32, 64, 128, 144, 256, 288, 512, 576, 1024, 2048, 3072, 4096, 8192, 16384, 32768, 32800, 33024, 33056, 65536, 65600, 66048, 66112, 131072, 132096, 133120, 134144, 262144, 266240, 524288, 528384, 786432, 790528, 1048576, 1056768, 2097152
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2024

Keywords

Examples

			The terms together with their binary expansions and binary indices begin:
        1:                1 ~ {1}
        2:               10 ~ {2}
        4:              100 ~ {3}
        8:             1000 ~ {4}
       12:             1100 ~ {3,4}
       16:            10000 ~ {5}
       32:           100000 ~ {6}
       64:          1000000 ~ {7}
      128:         10000000 ~ {8}
      144:         10010000 ~ {5,8}
      256:        100000000 ~ {9}
      288:        100100000 ~ {6,9}
      512:       1000000000 ~ {10}
      576:       1001000000 ~ {7,10}
     1024:      10000000000 ~ {11}
     2048:     100000000000 ~ {12}
     3072:     110000000000 ~ {11,12}
     4096:    1000000000000 ~ {13}
     8192:   10000000000000 ~ {14}
    16384:  100000000000000 ~ {15}
    32768: 1000000000000000 ~ {16}
    32800: 1000000000100000 ~ {6,16}
		

Crossrefs

For prime instead of binary indices we have A326534.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A321142 and A371794 count non-biquanimous strict partitions.
A321452 counts quanimous partitions, ranks A321454.
A326031 gives weight of the set-system with BII-number n.
A357976 ranks the biquanimous partitions counted by A002219 aerated.
A371731 ranks the non-biquanimous partitions counted by A371795, A006827.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],SameQ@@Total/@bix/@bix[#]&]

A048793 List giving all subsets of natural numbers arranged in standard statistical (or Yates) order.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 1, 2, 4, 3, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 1, 2, 5, 3, 5, 1, 3, 5, 2, 3, 5, 1, 2, 3, 5, 4, 5, 1, 4, 5, 2, 4, 5, 1, 2, 4, 5, 3, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 6, 2, 6, 1, 2, 6, 3, 6, 1, 3, 6, 2, 3, 6, 1, 2, 3, 6, 4, 6, 1, 4
Offset: 0

Views

Author

Keywords

Comments

For n>0: first occurrence of n in row 2^(n-1), and when the table is seen as a flattened list at position n*2^(n-1)+1, cf. A005183. - Reinhard Zumkeller, Nov 16 2013
Row n lists the positions of 1's in the reversed binary expansion of n. Compare to triangles A112798 and A213925. - Gus Wiseman, Jul 22 2019

Examples

			From _Gus Wiseman_, Jul 22 2019: (Start)
Triangle begins:
  {}
  1
  2
  1  2
  3
  1  3
  2  3
  1  2  3
  4
  1  4
  2  4
  1  2  4
  3  4
  1  3  4
  2  3  4
  1  2  3  4
  5
  1  5
  2  5
  1  2  5
  3  5
(End)
		

References

  • S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, p. 249.

Crossrefs

Cf. A048794.
Row lengths are A000120.
First column is A001511.
Heinz numbers of rows are A019565.
Row sums are A029931.
Reversing rows gives A272020.
Subtracting 1 from each term gives A133457; subtracting 1 and reversing rows gives A272011.
Indices of relatively prime rows are A291166 (see also A326674); arithmetic progressions are A295235; rows with integer average are A326669 (see also A326699/A326700); pairwise coprime rows are A326675.

Programs

  • C
    #include 
    #include 
    #define USAGE "Usage: 'A048793 num' where num is the largest number to use creating sets.\n"
    #define MAX_NUM 10
    #define MAX_ROW 1024
    int main(int argc, char *argv[]) {
      unsigned short a[MAX_ROW][MAX_NUM]; signed short old_row, new_row, i, j, end;
      if (argc < 2) { fprintf(stderr, USAGE); return EXIT_FAILURE; }
      end = atoi(argv[1]); end = (end > MAX_NUM) ? MAX_NUM: end;
      for (i = 0; i < MAX_ROW; i++) for ( j = 0; j < MAX_NUM; j++) a[i][j] = 0;
      a[1][0] = 1; new_row = 2;
      for (i = 2; i <= end; i++) {
        a[new_row++ ][0] = i;
        for (old_row = 1; a[old_row][0] != i; old_row++) {
          for (j = 0; a[old_row][j] != 0; j++) { a[new_row][j] = a[old_row][j]; }
          a[new_row++ ][j] = i;
        }
      }
      fprintf(stdout, "Values: 0");
      for (i = 1; a[i][0] != 0; i++) for (j = 0; a[i][j] != 0; j++) fprintf(stdout, ",%d", a[i][j]);
      fprintf(stdout, "\n"); return EXIT_SUCCESS
    }
    
  • Haskell
    a048793 n k = a048793_tabf !! n !! k
    a048793_row n = a048793_tabf !! n
    a048793_tabf = [0] : [1] : f [[1]] where
       f xss = yss ++ f (xss ++ yss) where
         yss = [y] : map (++ [y]) xss
         y = last (last xss) + 1
    -- Reinhard Zumkeller, Nov 16 2013
  • Maple
    T:= proc(n) local i, l, m; l:= NULL; m:= n;
          if n=0 then return 0 fi; for i while m>0 do
          if irem(m, 2, 'm')=1 then l:=l, i fi od; l
        end:
    seq(T(n), n=0..50);  # Alois P. Heinz, Sep 06 2014
  • Mathematica
    s[0] = {{}}; s[n_] := s[n] = Join[s[n - 1], Append[#, n]& /@ s[n - 1]]; Join[{0}, Flatten[s[6]]] (* Jean-François Alcover, May 24 2012 *)
    Table[Join@@Position[Reverse[IntegerDigits[n,2]],1],{n,30}] (* Gus Wiseman, Jul 22 2019 *)

Formula

Constructed recursively: subsets that include n are obtained by appending n to all earlier subsets.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2000

A019565 The squarefree numbers ordered lexicographically by their prime factorization (with factors written in decreasing order). a(n) = Product_{k in I} prime(k+1), where I is the set of indices of nonzero binary digits in n = Sum_{k in I} 2^k.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 42, 35, 70, 105, 210, 11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310, 13, 26, 39, 78, 65, 130, 195, 390, 91, 182, 273, 546, 455, 910, 1365, 2730, 143, 286, 429, 858, 715, 1430, 2145, 4290
Offset: 0

Views

Author

Keywords

Comments

A permutation of the squarefree numbers A005117. The missing positive numbers are in A013929. - Alois P. Heinz, Sep 06 2014
From Antti Karttunen, Apr 18 & 19 2017: (Start)
Because a(n) toggles the parity of n there are neither fixed points nor any cycles of odd length.
Conjecture: there are no finite cycles of any length. My grounds for this conjecture: any finite cycle in this sequence, if such cycles exist at all, must have at least one member that occurs somewhere in A285319, the terms that seem already to be quite rare. Moreover, any such a number n should satisfy in addition to A019565(n) < n also that A048675^{k}(n) is squarefree, not just for k=0, 1 but for all k >= 0. As there is on average a probability of only 6/(Pi^2) = 0.6079... that any further term encountered on the trajectory of A048675 is squarefree, the total chance that all of them would be squarefree (which is required from the elements of A019565-cycles) is soon minuscule, especially as A048675 is not very tightly bounded (many trajectories seem to skyrocket, at least initially). I am also assuming that usually there is no significant correlation between the binary expansions of n and A048675(n) (apart from their least significant bits), or, for that matter, between their prime factorizations.
See also the slightly stronger conjecture in A285320, which implies that there would neither be any two-way infinite cycles.
If either of the conjectures is false (there are cycles), then certainly neither sequence A285332 nor its inverse A285331 can be a permutation of natural numbers. (End)
The conjecture made in A087207 (see also A288569) implies the two conjectures mentioned above. A further constraint for cycles is that in any A019565-trajectory which starts from a squarefree number (A005117), every other term is of the form 4k+2, while every other term is of the form 6k+3. - Antti Karttunen, Jun 18 2017
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever x and y do not have a 1-bit in the same position, i.e., when A004198(x,y) = 0. See also A283475. - Antti Karttunen, Oct 31 2019
The above identity becomes unconditional if binary exclusive OR, A003987(.,.), is substituted for addition, and A059897(.,.), a multiplicative equivalent of A003987, is substituted for multiplication. This gives us a(A003987(x,y)) = A059897(a(x), a(y)). - Peter Munn, Nov 18 2019
Also the Heinz number of the binary indices of n, where the Heinz number of a sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k), and a number's binary indices (A048793) are the positions of 1's in its reversed binary expansion. - Gus Wiseman, Dec 28 2022

Examples

			5 = 2^2+2^0, e_1 = 2, e_2 = 0, prime(2+1) = prime(3) = 5, prime(0+1) = prime(1) = 2, so a(5) = 5*2 = 10.
From _Philippe Deléham_, Jun 03 2015: (Start)
This sequence regarded as a triangle withs rows of lengths 1, 1, 2, 4, 8, 16, ...:
   1;
   2;
   3,  6;
   5, 10, 15, 30;
   7, 14, 21, 42, 35,  70, 105, 210;
  11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310;
  ...
(End)
From _Peter Munn_, Jun 14 2020: (Start)
The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic order. We start with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
   n     a(n)
   0     1 = .
   1     2 = 2.
   2     3 = 3.
   3     6 = 3*2.
   4     5 = 5.
   5    10 = 5*2.
   6    15 = 5*3.
   7    30 = 5*3*2.
   8     7 = 7.
   9    14 = 7*2.
  10    21 = 7*3.
  11    42 = 7*3*2.
  12    35 = 7*5.
(End)
		

Crossrefs

Row 1 of A285321.
Equivalent sequences for k-th-power-free numbers: A101278 (k=3), A101942 (k=4), A101943 (k=5), A054842 (k=10).
Cf. A109162 (iterates).
Cf. also A048675 (a left inverse), A087207, A097248, A260443, A054841.
Cf. A285315 (numbers for which a(n) < n), A285316 (for which a(n) > n).
Cf. A276076, A276086 (analogous sequences for factorial and primorial bases), A334110 (terms squared).
For partial sums see A288570.
A003961, A003987, A004198, A059897, A089913, A331590, A334747 are used to express relationships between sequence terms.
Column 1 of A329332.
Even bisection (which contains the odd terms): A332382.
A160102 composed with A052330, and subsequence of the latter.
Related to A000079 via A225546, to A057335 via A122111, to A008578 via A336322.
Least prime index of a(n) is A001511.
Greatest prime index of a(n) is A029837 or A070939.
Taking prime indices gives A048793, reverse A272020, row sums A029931.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Haskell
    a019565 n = product $ zipWith (^) a000040_list (a030308_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    a:= proc(n) local i, m, r; m:=n; r:=1;
          for i while m>0 do if irem(m,2,'m')=1
            then r:=r*ithprime(i) fi od; r
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 06 2014
  • Mathematica
    Do[m=1;o=1;k1=k;While[ k1>0, k2=Mod[k1, 2];If[k2\[Equal]1, m=m*Prime[o]];k1=(k1-k2)/ 2;o=o+1];Print[m], {k, 0, 55}] (* Lei Zhou, Feb 15 2005 *)
    Table[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2], {n, 0, 55}]  (* Michael De Vlieger, Aug 27 2016 *)
    b[0] := {1}; b[n_] := Flatten[{ b[n - 1], b[n - 1] * Prime[n] }];
      a = b[6] (* Fred Daniel Kline, Jun 26 2017 *)
  • PARI
    a(n)=factorback(vecextract(primes(logint(n+!n,2)+1),n))  \\ M. F. Hasler, Mar 26 2011, updated Aug 22 2014, updated Mar 01 2018
    
  • Python
    from operator import mul
    from functools import reduce
    from sympy import prime
    def A019565(n):
        return reduce(mul,(prime(i+1) for i,v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1
    # Chai Wah Wu, Dec 25 2014
    
  • Scheme
    (define (A019565 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) p) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p))))) ;; (Requires only the implementation of A000040 for prime numbers.) - Antti Karttunen, Apr 20 2017

Formula

G.f.: Product_{k>=0} (1 + prime(k+1)*x^2^k), where prime(k)=A000040(k). - Ralf Stephan, Jun 20 2003
a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/2), y*prime(z)^(x mod 2), z+1) else y. - Reinhard Zumkeller, Mar 13 2010
For all n >= 0: A048675(a(n)) = n; A013928(a(n)) = A064273(n). - Antti Karttunen, Jul 29 2015
a(n) = a(2^x)*a(2^y)*a(2^z)*... = prime(x+1)*prime(y+1)*prime(z+1)*..., where n = 2^x + 2^y + 2^z + ... - Benedict W. J. Irwin, Jul 24 2016
From Antti Karttunen, Apr 18 2017 and Jun 18 2017: (Start)
a(n) = A097248(A260443(n)), a(A005187(n)) = A283475(n), A108951(a(n)) = A283477(n).
A055396(a(n)) = A001511(n), a(A087207(n)) = A007947(n). (End)
a(2^n - 1) = A002110(n). - Michael De Vlieger, Jul 05 2017
a(n) = A225546(A000079(n)). - Peter Munn, Oct 31 2019
From Peter Munn, Mar 04 2022: (Start)
a(2n) = A003961(a(n)); a(2n+1) = 2*a(2n).
a(x XOR y) = A059897(a(x), a(y)) = A089913(a(x), a(y)), where XOR denotes bitwise exclusive OR (A003987).
a(n+1) = A334747(a(n)).
a(x+y) = A331590(a(x), a(y)).
a(n) = A336322(A008578(n+1)).
(End)

Extensions

Definition corrected by Klaus-R. Löffler, Aug 20 2014
New name from Peter Munn, Jun 14 2020

A333489 Numbers k such that the k-th composition in standard order is an anti-run (no adjacent equal parts).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 24, 25, 32, 33, 34, 37, 38, 40, 41, 44, 45, 48, 49, 50, 52, 54, 64, 65, 66, 68, 69, 70, 72, 76, 77, 80, 81, 82, 88, 89, 96, 97, 98, 101, 102, 104, 105, 108, 109, 128, 129, 130, 132, 133, 134, 137, 140, 141
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()          33: (5,1)         70: (4,1,2)
    1: (1)         34: (4,2)         72: (3,4)
    2: (2)         37: (3,2,1)       76: (3,1,3)
    4: (3)         38: (3,1,2)       77: (3,1,2,1)
    5: (2,1)       40: (2,4)         80: (2,5)
    6: (1,2)       41: (2,3,1)       81: (2,4,1)
    8: (4)         44: (2,1,3)       82: (2,3,2)
    9: (3,1)       45: (2,1,2,1)     88: (2,1,4)
   12: (1,3)       48: (1,5)         89: (2,1,3,1)
   13: (1,2,1)     49: (1,4,1)       96: (1,6)
   16: (5)         50: (1,3,2)       97: (1,5,1)
   17: (4,1)       52: (1,2,3)       98: (1,4,2)
   18: (3,2)       54: (1,2,1,2)    101: (1,3,2,1)
   20: (2,3)       64: (7)          102: (1,3,1,2)
   22: (2,1,2)     65: (6,1)        104: (1,2,4)
   24: (1,4)       66: (5,2)        105: (1,2,3,1)
   25: (1,3,1)     68: (4,3)        108: (1,2,1,3)
   32: (6)         69: (4,2,1)      109: (1,2,1,2,1)
		

Crossrefs

Anti-runs summing to n are counted by A003242(n).
A triangle counting maximal anti-runs of compositions is A106356.
A triangle counting maximal runs of compositions is A238279 or A238130.
Partitions whose first differences are an anti-run are A238424.
All of the following pertain to compositions in standard order (A066099):
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,x_,_}]&]

A048675 If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

The original motivation for this sequence was to encode the prime factorization of n in the binary representation of a(n), each such representation being unique as long as this map is restricted to A005117 (squarefree numbers, resulting a permutation of nonnegative integers A048672) or any of its subsequence, resulting an injective function like A048623 and A048639.
However, also the restriction to A260443 (not all terms of which are squarefree) results a permutation of nonnegative integers, namely A001477, the identity permutation.
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443), then a(n) gives the evaluation of that polynomial at x=2.
The primitive completely additive integer sequence that satisfies a(n) = a(A225546(n)), n >= 1. By primitive, we mean that if b is another such sequence, then there is an integer k such that b(n) = k * a(n) for all n >= 1. - Peter Munn, Feb 03 2020
If the binary rank of an integer partition y is given by Sum_i 2^(y_i-1), and the Heinz number is Product_i prime(y_i), then a(n) is the binary rank of the integer partition with Heinz number n. Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices), and the function taking a multiset m to Product_i prime(m_i) is the inverse of A112798 (prime indices). - Gus Wiseman, May 22 2024

Examples

			From _Gus Wiseman_, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
   30: {1,2,3}
   40: {1,1,1,3}
   54: {1,2,2,2}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
(End)
		

Crossrefs

Row 2 of A104244.
Similar logarithmic functions: A001414, A056239, A090880, A289506, A293447.
Left inverse of the following sequences: A000079, A019565, A038754, A068911, A134683, A260443, A332824.
A003961, A028234, A032742, A055396, A064989, A067029, A225546, A297845 are used to express relationship between terms of this sequence.
Cf. also A048623, A048676, A099884, A277896 and tables A277905, A285325.
Cf. A297108 (Möbius transform), A332813 and A332823 [= a(n) mod 3].
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000203,A331750), (A005940,A087808), (A007913,A248663), (A007947,A087207), (A097248,A048675), (A206296,A000129), (A248692,A056239), (A283477,A005187), (A284003,A006068), (A285101,A028362), (A285102,A068052), (A293214,A001065), (A318834,A051953), (A319991,A293897), (A319992,A293898), (A320017,A318674), (A329352,A069359), (A332461,A156552), (A332462,A156552), (A332825,A000010) and apparently (A163511,A135529).
See comments/formulas in A277333, A331591, A331740 giving their relationship to this sequence.
The formula section details how the sequence maps the terms of A329050, A329332.
A277892, A322812, A322869, A324573, A324575 give properties of the n-th term of this sequence.
The term k appears A018819(k) times.
The inverse transformation is A019565 (Heinz number of binary indices).
The version for distinct prime indices is A087207.
Numbers k such that a(k) is prime are A277319, counts A372688.
Grouping by image gives A277905.
A014499 lists binary indices of prime numbers.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Maple
    nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
    A048675 := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
    # simpler alternative
    f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Oct 10 2016
  • Mathematica
    a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*2^primepi(f[k,1]))/2; \\ Michel Marcus, Oct 10 2016
    
  • PARI
    \\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
    v048675sigs = readvec("a048675.txt");
    A048675(n) = if(n<=2,n-1,my(prsig=v048675sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n==1: return 0
        f=factorint(n)
        return sum([f[i]*2**(primepi(i) - 1) for i in f])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017

Formula

a(1) = 0, a(n) = 1/2 * (e1*2^i1 + e2*2^i2 + ... + ez*2^iz) if n = p_{i1}^e1*p_{i2}^e2*...*p_{iz}^ez, where p_i is the i-th prime. (e.g. p_1 = 2, p_2 = 3).
Totally additive with a(p^e) = e * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n). [Missing factor e added to the comment by Antti Karttunen, Jul 29 2015]
From Antti Karttunen, Jul 29 2015: (Start)
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.]
a(1) = 0; for n > 1, a(n) = (A067029(n) * (2^(A055396(n)-1))) + a(A028234(n)).
Other identities. For all n >= 0:
a(A019565(n)) = n.
a(A260443(n)) = n.
a(A206296(n)) = A000129(n).
a(A005940(n+1)) = A087808(n).
a(A007913(n)) = A248663(n).
a(A007947(n)) = A087207(n).
a(A283477(n)) = A005187(n).
a(A284003(n)) = A006068(n).
a(A285101(n)) = A028362(1+n).
a(A285102(n)) = A068052(n).
Also, it seems that a(A163511(n)) = A135529(n) for n >= 1. (End)
a(1) = 0, a(2n) = 1+a(n), a(2n+1) = 2*a(A064989(2n+1)). - Antti Karttunen, Oct 11 2016
From Peter Munn, Jan 31 2020: (Start)
a(n^2) = a(A003961(n)) = 2 * a(n).
a(A297845(n,k)) = a(n) * a(k).
a(n) = a(A225546(n)).
a(A329332(n,k)) = n * k.
a(A329050(n,k)) = 2^(n+k).
(End)
From Antti Karttunen, Feb 02-25 2020, Feb 01 2021: (Start)
a(n) = Sum_{d|n} A297108(d) = Sum_{d|A225546(n)} A297108(d).
a(n) = a(A097248(n)).
For n >= 2:
A001221(a(n)) = A322812(n), A001222(a(n)) = A277892(n).
A000203(a(n)) = A324573(n), A033879(a(n)) = A324575(n).
For n >= 1, A331750(n) = a(A000203(n)).
For n >= 1, the following chains hold:
A293447(n) >= a(n) >= A331740(n) >= A331591(n).
a(n) >= A087207(n) >= A248663(n).
(End)
a(n) = A087207(A097248(n)). - Flávio V. Fernandes, Jul 16 2025

Extensions

Entry revised by Antti Karttunen, Jul 29 2015
More linking formulas added by Antti Karttunen, Apr 18 2017

A124767 Number of level runs for compositions in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 3, 4, 3, 2, 2, 3, 3, 3, 3, 3, 4, 3, 2, 3, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 4, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 2, 2, 3, 3, 3, 2, 4, 4, 3, 3
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
For n > 0, a(n) is one more than the number of adjacent unequal terms in the n-th composition in standard order. Also the number of runs in the same composition. - Gus Wiseman, Apr 08 2020

Examples

			Composition number 11 is 2,1,1; the level runs are 2; 1,1; so a(11) = 2.
The table starts:
  0
  1
  1 1
  1 2 2 1
  1 2 1 2 2 3 2 1
  1 2 2 2 2 2 3 2 2 3 2 3 2 3 2 1
  1 2 2 2 1 3 3 2 2 3 1 2 3 4 3 2 2 3 3 3 3 3 4 3 2 3 2 3 2 3 2 1
The 1234567th composition in standard order is (3,2,1,2,2,1,2,5,1,1,1) with runs ((3),(2),(1),(2,2),(1),(2),(5),(1,1,1)), so a(1234567) = 8. - _Gus Wiseman_, Apr 08 2020
		

Crossrefs

Row-lengths are A011782.
Compositions counted by number of runs are A238279 or A333755.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Weakly decreasing compositions are A114994.
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767 (this sequence).
- Weakly increasing compositions are A225620.
- Strict compositions A233564.
- Constant compositions are A272919.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- Anti-run compositions are A333489.
- Runs-resistance is A333628.
- Run-lengths are A333769 (triangle).

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Split[stc[n]]],{n,0,100}] (* Gus Wiseman, Apr 17 2020 *)

Formula

a(0) = 0, a(n) = 1 + Sum_{1<=i=1 0.
For n > 0, a(n) = A333382(n) + 1. - Gus Wiseman, Apr 08 2020

A233564 c-squarefree numbers: positive integers which in binary are concatenation of distinct parts of the form 10...0 with nonnegative number of zeros.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 18, 20, 24, 32, 33, 34, 37, 38, 40, 41, 44, 48, 50, 52, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 129, 130, 132, 133, 134, 137, 140, 144, 145, 152, 160, 161, 176, 192, 194, 196, 200, 208, 256, 257, 258, 260, 261
Offset: 1

Views

Author

Vladimir Shevelev, Dec 13 2013

Keywords

Comments

Number of terms in interval [2^(n-1), 2^n) is the number of compositions of n with distinct parts (cf. A032020). For example, if n=6, then interval [2^5, 2^6) contains 11 terms {32,...,52}. This corresponds to 11 compositions with distinct parts of 6: 6, 5+1, 1+5, 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3.
From Gus Wiseman, Apr 06 2020: (Start)
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. This sequence lists all numbers k such that the k-th composition in standard order is strict. For example, the sequence together with the corresponding strict compositions begins:
0: () 38: (3,1,2) 98: (1,4,2)
1: (1) 40: (2,4) 104: (1,2,4)
2: (2) 41: (2,3,1) 128: (8)
4: (3) 44: (2,1,3) 129: (7,1)
5: (2,1) 48: (1,5) 130: (6,2)
6: (1,2) 50: (1,3,2) 132: (5,3)
8: (4) 52: (1,2,3) 133: (5,2,1)
9: (3,1) 64: (7) 134: (5,1,2)
12: (1,3) 65: (6,1) 137: (4,3,1)
16: (5) 66: (5,2) 140: (4,1,3)
17: (4,1) 68: (4,3) 144: (3,5)
18: (3,2) 69: (4,2,1) 145: (3,4,1)
20: (2,3) 70: (4,1,2) 152: (3,1,4)
24: (1,4) 72: (3,4) 160: (2,6)
32: (6) 80: (2,5) 161: (2,5,1)
33: (5,1) 81: (2,4,1) 176: (2,1,5)
34: (4,2) 88: (2,1,4) 192: (1,7)
37: (3,2,1) 96: (1,6) 194: (1,5,2)
(End)

Examples

			49 in binary has the following parts of the form 10...0 with nonnegative number of  zeros: (1),(1000),(1). Two of them are the same. So it is not in the sequence. On the other hand, 50 has distinct parts (1)(100)(10), thus it is a term.
		

Crossrefs

A subset of A333489 and superset of A333218.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Weighted sum is A029931.
- Partial sums from the right are A048793.
- Sum is A070939.
- Runs are counted by A124767.
- Reversed initial intervals A164894.
- Initial intervals are A246534.
- Constant compositions are A272919.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.
- Anti-runs are counted by A333381.
- Anti-runs are A333489.

Programs

  • Mathematica
    bitPatt[n_]:=bitPatt[n]=Split[IntegerDigits[n,2],#1>#2||#2==0&];
    Select[Range[0,300],bitPatt[#]==DeleteDuplicates[bitPatt[#]]&] (* Peter J. C. Moses, Dec 13 2013 *)
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@stc[#]&] (* Gus Wiseman, Apr 04 2020 *)

Extensions

More terms from Peter J. C. Moses, Dec 13 2013
0 prepended by Gus Wiseman, Apr 04 2020

A333217 Numbers k such that the k-th composition in standard order covers an initial interval of positive integers.

Original entry on oeis.org

0, 1, 3, 5, 6, 7, 11, 13, 14, 15, 21, 22, 23, 26, 27, 29, 30, 31, 37, 38, 41, 43, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 59, 61, 62, 63, 75, 77, 78, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 101, 102, 105, 106, 107, 108, 109, 110, 111, 114, 116, 117, 118
Offset: 1

Views

Author

Gus Wiseman, Mar 15 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence of terms together with the corresponding compositions begins:
    0: ()              37: (3,2,1)           75: (3,2,1,1)
    1: (1)             38: (3,1,2)           77: (3,1,2,1)
    3: (1,1)           41: (2,3,1)           78: (3,1,1,2)
    5: (2,1)           43: (2,2,1,1)         83: (2,3,1,1)
    6: (1,2)           44: (2,1,3)           85: (2,2,2,1)
    7: (1,1,1)         45: (2,1,2,1)         86: (2,2,1,2)
   11: (2,1,1)         46: (2,1,1,2)         87: (2,2,1,1,1)
   13: (1,2,1)         47: (2,1,1,1,1)       89: (2,1,3,1)
   14: (1,1,2)         50: (1,3,2)           90: (2,1,2,2)
   15: (1,1,1,1)       52: (1,2,3)           91: (2,1,2,1,1)
   21: (2,2,1)         53: (1,2,2,1)         92: (2,1,1,3)
   22: (2,1,2)         54: (1,2,1,2)         93: (2,1,1,2,1)
   23: (2,1,1,1)       55: (1,2,1,1,1)       94: (2,1,1,1,2)
   26: (1,2,2)         58: (1,1,2,2)         95: (2,1,1,1,1,1)
   27: (1,2,1,1)       59: (1,1,2,1,1)      101: (1,3,2,1)
   29: (1,1,2,1)       61: (1,1,1,2,1)      102: (1,3,1,2)
   30: (1,1,1,2)       62: (1,1,1,1,2)      105: (1,2,3,1)
   31: (1,1,1,1,1)     63: (1,1,1,1,1,1)    106: (1,2,2,2)
		

Crossrefs

Sequences covering an initial interval are counted by A000670.
Composition in standard order are A066099.
The case of strictly increasing initial intervals is A164894.
The case of strictly decreasing initial intervals is A246534.
The case of permutations is A333218.
The weakly increasing version is A333379.
The weakly decreasing version is A333380.

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],normQ[stc[#]]&]
Showing 1-10 of 313 results. Next