A368531 Numbers whose binary indices are all powers of 3, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion.
0, 1, 4, 5, 256, 257, 260, 261, 67108864, 67108865, 67108868, 67108869, 67109120, 67109121, 67109124, 67109125, 1208925819614629174706176, 1208925819614629174706177, 1208925819614629174706180, 1208925819614629174706181, 1208925819614629174706432
Offset: 1
Keywords
Examples
The terms together with their binary expansions and binary indices begin: 0: 0 ~ {} 1: 1 ~ {1} 4: 100 ~ {3} 5: 101 ~ {1,3} 256: 100000000 ~ {9} 257: 100000001 ~ {1,9} 260: 100000100 ~ {3,9} 261: 100000101 ~ {1,3,9} 67108864: 100000000000000000000000000 ~ {27} 67108865: 100000000000000000000000001 ~ {1,27} 67108868: 100000000000000000000000100 ~ {3,27} 67108869: 100000000000000000000000101 ~ {1,3,27} 67109120: 100000000000000000100000000 ~ {9,27} 67109121: 100000000000000000100000001 ~ {1,9,27} 67109124: 100000000000000000100000100 ~ {3,9,27} 67109125: 100000000000000000100000101 ~ {1,3,9,27}
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..256
Crossrefs
Programs
-
Mathematica
Select[Range[0,10000],IntegerQ[Log[3,Times@@Join@@Position[Reverse[IntegerDigits[#,2]],1]]]&] (* Second program *) {0}~Join~Array[FromDigits[Reverse@ ReplacePart[ConstantArray[0, Max[#]], Map[# -> 1 &, #]], 2] &[3^(Position[Reverse@ IntegerDigits[#, 2], 1][[;; , 1]] - 1)] &, 255] (* Michael De Vlieger, Dec 29 2023 *)
Formula
a(3^n) = 2^(3^n - 1).
Comments