A264619 a(0) = 1; for n>0, working in binary, write n followed by 1 then n-reversed (including leading zeros); show result in base 10.
1, 7, 21, 31, 73, 93, 107, 127, 273, 313, 341, 381, 403, 443, 471, 511, 1057, 1137, 1193, 1273, 1317, 1397, 1453, 1533, 1571, 1651, 1707, 1787, 1831, 1911, 1967, 2047, 4161, 4321, 4433, 4593, 4681, 4841, 4953, 5113, 5189, 5349, 5461, 5621, 5709, 5869, 5981, 6141, 6211, 6371, 6483, 6643, 6731, 6891, 7003, 7163, 7239
Offset: 0
Keywords
Examples
1 -> 111 = 7, 10 -> 10101 = 21, 11 -> 11111 = 31, 100 -> 1001001 = 73, ...
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..32767
Crossrefs
Programs
-
Haskell
a264619 0 = 1 a264619 n = foldr (\b v -> 2 * v + b) 0 $ (reverse bs ++ (1 : bs)) where bs = map fromIntegral $ a030308_row n -- Reinhard Zumkeller, Dec 01 2015
-
Mathematica
A264619[0] = 1; A264619[n_] := FromDigits[Join[#, {1}, Reverse[#]], 2]&@ IntegerDigits[n, 2] (* JungHwan Min, Dec 01 2015 *) bnr[n_]:=Module[{idn2=IntegerDigits[n,2]},FromDigits[Join[idn2,{1}, Reverse[ idn2]],2]]; Join[{1},Array[bnr,60]] (* Harvey P. Dale, Nov 05 2017 *)
Comments