cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264717 Central terms of triangle A100326.

Original entry on oeis.org

1, 4, 46, 626, 9094, 136792, 2102728, 32804760, 517325270, 8225083124, 131614959262, 2116988791018, 34196629924584, 554369366584256, 9014333613083632, 146961155561594176, 2401364353568376054, 39316907672544234028, 644861670750937767370
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 21 2015

Keywords

Crossrefs

Cf. A100326.

Programs

  • Haskell
    a264717 n = a100326 (2 * n) n
    
  • Magma
    [n le 2 select 4^(n-1) else ( 6*(1797120*n^8 -28080000*n^7 +189074880*n^6 -715605188*n^5 +1662275017*n^4 -2421570243*n^3 +2154450632*n^2 -1066134220*n +223382400)*Self(n-1) +3*(3*n-8)*(3*n-10)*(2*n-5)*(n-3)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158)*Self(n-2))/(16*(n-2)*(2*n-3)*(4*n-7)*(4*n-5)*(1248*n^4 -10764*n^3 +33191*n^2 -42113*n +17280)): n in [1..41]]; // G. C. Greubel, Jan 30 2023
    
  • Mathematica
    a[n_]:= a[n]= If[n<2, 4^n, (6*(1797120*n^8 -13703040*n^7 +42834240*n^6 -70197188*n^5 +63370677*n^4 -29185735*n^3 +4100685*n^2 +1396683*n - 409602)*a[n-1] +3*(3*n-5)*(3*n-7)*(2*n-3)*(n-2)*(1248*n^4 -780*n^3 -1441*n^2 +1419*n -326)*a[n-2])/(16*(n-1)*(2*n-1)*(4*n-3)*(4*n-1)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158))];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Jan 30 2023 *)
  • SageMath
    def p(n): return 1797120*n^8 -13703040*n^7 +42834240*n^6 -70197188*n^5 +63370677*n^4 -29185735*n^3 +4100685*n^2 +1396683*n - 409602
    def q(n): return (3*n-5)*(3*n-7)*(2*n-3)*(n-2)*(1248*n^4 -780*n^3 -1441*n^2 +1419*n -326)
    @CachedFunction
    def a(n): # a = A264717
        if(n<2): return 4^n
        else: return (6*p(n)*a(n-1) +3*q(n)*a(n-2))/(16*(n-1)*(2*n-1)*(4*n-3)*(4*n-1)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158))
    [a(n) for n in range(41)] # G. C. Greubel, Jan 30 2023

Formula

a(n) = A100326(2*n,n).
a(n) = (6*(1797120*n^8 -13703040*n^7 +42834240*n^6 -70197188*n^5 +63370677*n^4 -29185735*n^3 +4100685*n^2 +1396683*n - 409602)*a(n-1) +3*(3*n-5)*(3*n-7)*(2*n-3)*(n-2)*(1248*n^4 -780*n^3 -1441*n^2 +1419*n -326)*a(n-2))/(16*(n-1)*(2*n-1)*(4*n-3)*(4*n-1)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158)). - G. C. Greubel, Jan 30 2023
a(n) ~ 3^(3*n/2 - 1) * (1 + sqrt(3))^(6*n + 1/2) / (sqrt(Pi*n) * 2^(7*n + 1/2)). - Vaclav Kotesovec, Jan 31 2023