A264733 a(n) is the smallest number > 1 such that the concatenation a(1)a(2)...a(n) is a perfect power.
4, 9, 13, 31556, 4433200001, 7330164793357114944, 364233003001227343654904892703798707409, 30558883460500823396683989630832748682356643682219859233661160618544138815441
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10
- Amarnath Murthy, Exploring some new ideas on Smarandache type sets, functions and sequences, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000. p. 172 (breakup sequences).
Crossrefs
Programs
-
Maple
a[1]:= 4: C:= 4: for n from 2 to 9 do looking:= true; for d from 1 while looking do L:= 10^d*C + 10^(d-1); U:= 10^d*C + 10^d - 1; p:= 1; while p < ilog2(U) do p:= nextprime(p); Lp:= ceil(L^(1/p)); Up:= floor(U^(1/p)); while not (Lp::integer and Up::integer) do Digits:= 2*Digits; Lp:= eval(Lp); Up:= eval(Up); od; if Lp <= Up then Cp:= Lp^p; a[n]:= Cp - 10^d*C; C:= Cp; looking:= false; break fi od od od: seq(a[i],i=1..9); # Robert Israel, Nov 27 2015
-
Mathematica
a = {}; Do[k = 2; While[! Or[# == 1, GCD @@ FactorInteger[#][[All, -1]] > 1] &@ FromDigits@ Flatten@ Join[#, IntegerDigits@ k], k++] &@ Map[IntegerDigits, a]; AppendTo[a, k], {i, 4}]; a (* Michael De Vlieger, Jan 23 2017 *)
-
PARI
first(m)=my(s="4"); print1(4, ", "); for(i=2,m,n=1; while(!ispower(eval(concat(s,Str(n)))),n++); print1(n, ", "); s=concat(s,Str(n)))
Extensions
a(5)-a(8) from Jon E. Schoenfield, Nov 22 2015