A264740 Sum of odd parts of divisors of n.
1, 2, 4, 3, 6, 8, 8, 4, 13, 12, 12, 12, 14, 16, 24, 5, 18, 26, 20, 18, 32, 24, 24, 16, 31, 28, 40, 24, 30, 48, 32, 6, 48, 36, 48, 39, 38, 40, 56, 24, 42, 64, 44, 36, 78, 48, 48, 20, 57, 62, 72, 42, 54, 80, 72, 32, 80, 60, 60, 72, 62, 64, 104, 7
Offset: 1
Examples
Divisors of 10 are 1, 2, 5, 10. The odd parts of these are 1, 1, 5, 5, so a(10) = 1+1+5+5 = 12.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a264740 = sum . map a000265 . a027750_row' -- Reinhard Zumkeller, Nov 23 2015
-
Maple
with(numtheory): with(padic): seq(add(d/2^ordp(d,2), d in divisors(n)), n=1..80); # Ridouane Oudra, Oct 30 2023
-
Mathematica
f[p_, e_] := If[p == 2, e + 1, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 30 2020 *)
-
PARI
a(n)=my(k=valuation(n,2));sigma(n)\(2^(k+1)-1)*(k+1)
Formula
Multiplicative with a(2^k) = k + 1, a(p^k) = sigma(p^k) = (p^(k+1)-1) / (p-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Nov 04 2022
a(n) = Sum_{d|n} A000265(d). - Ridouane Oudra, Oct 30 2023
Comments