cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264758 An eventually quasi-cubic solution to Hofstadter's Q recurrence.

Original entry on oeis.org

7, 0, 5, 9, 3, 8, 9, 2, 9, 9, 3, 14, 9, 3, 22, 9, 2, 18, 9, 3, 32, 9, 3, 54, 9, 2, 27, 9, 3, 59, 9, 3, 113, 9, 2, 36, 9, 3, 95, 9, 3, 208, 9, 2, 45, 9, 3, 140, 9, 3, 348, 9, 2, 54, 9, 3, 194, 9, 3, 542, 9, 2, 63, 9, 3, 257, 9, 3, 799, 9, 2, 72, 9, 3, 329, 9
Offset: 1

Views

Author

Nathan Fox, Nov 23 2015

Keywords

Comments

a(n) is the solution to the recurrence relation a(n) = a(n-a(n-1)) + a(n-a(n-2)) [Hofstadter's Q recurrence], with the initial conditions: a(n) = 0 if n <= 0; a(1) = 7, a(2) = 0, a(3) = 5, a(4) = 9, a(5) = 3, a(6) = 8, a(7) = 9, a(8) = 2, a(9) = 9, a(10) = 9, a(11) = 3.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (7+5x^2+9x^3+3x^4+8x^5+9x^6+2x^7+9x^8- 19x^9+ 3x^10- 6x^11- 27x^12-9x^13- 10x^14- 27x^15-6x^16-18x^17+ 15x^18- 9x^19+6x^20+ 27x^21+9x^22+14x^23+ 27x^24+ 6x^25+ 9x^26-x^27+9x^28- 5x^29-9x^30-3x^31- 3x^32-9x^33-2x^34- 2x^36-3x^37)/((1-x)^4(1+x+x^2)^4 (1+x^3+x^6)^4),{x,0,100}],x] (* Harvey P. Dale, Aug 14 2021 *)
  • PARI
    a = [7,0,5,9,3,8,9,2]; for(n=1, 10, a=concat(a, [9*n, 9, 3, 9/2*n^2+9/2*n+5, 9, 3, 3/2*n^3+9/2*n^2+8*n+8, 9, 2])); a

Formula

a(1) = 7, a(2) = 0; thereafter a(9*n) = 9*n, a(9*n+1) = 9, a(9*n+2) = 3, a(9*n+3) = 9/2*n^2+9/2*n+5, a(9*n+4) = 9, a(9*n+5) = 3, a(9*n+6) = 3/2*n^3+9/2*n^2+8*n+8, a(9*n+7) = 9, a(9*n+8) = 2.
From Colin Barker, Nov 14 2016: (Start)
G.f.: x*(7 +5*x^2 +9*x^3 +3*x^4 +8*x^5 +9*x^6 +2*x^7 +9*x^8 -19*x^9 +3*x^10 -6*x^11 -27*x^12 -9*x^13 -10*x^14 -27*x^15 -6*x^16 -18*x^17 +15*x^18 -9*x^19 +6*x^20 +27*x^21 +9*x^22 +14*x^23 +27*x^24 +6*x^25 +9*x^26 -x^27 +9*x^28 -5*x^29 -9*x^30 -3*x^31 -3*x^32 -9*x^33 -2*x^34 -2*x^36 -3*x^37) / ((1 -x)^4*(1 +x +x^2)^4*(1 +x^3 +x^6)^4).
a(n) = 4*a(n-9) - 6*a(n-18) + 4*a(n-27) - a(n-36) for n>38.
(End)