A264773 Triangle T(n,k) = binomial(4*n - 3*k, 3*n - 2*k), 0 <= k <= n.
1, 4, 1, 28, 5, 1, 220, 36, 6, 1, 1820, 286, 45, 7, 1, 15504, 2380, 364, 55, 8, 1, 134596, 20349, 3060, 455, 66, 9, 1, 1184040, 177100, 26334, 3876, 560, 78, 10, 1, 10518300, 1560780, 230230, 33649, 4845, 680, 91, 11, 1, 94143280, 13884156, 2035800, 296010, 42504, 5985, 816, 105, 12, 1
Offset: 0
Examples
Triangle begins n\k | 0 1 2 3 4 5 6 7 ------+----------------------------------------------- 0 | 1 1 | 4 1 2 | 28 5 1 3 | 220 36 6 1 4 | 1820 286 45 7 1 5 | 15504 2380 364 55 8 1 6 | 134596 20349 3060 455 66 9 1 7 | 1184040 177100 26334 3876 560 78 10 1 ...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
Crossrefs
Programs
-
Magma
/* As triangle: */ [[Binomial(4*n-3*k, 3*n-2*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
Maple
A264773:= proc(n,k) binomial(4*n - 3*k, 3*n - 2*k); end proc: seq(seq(A264773(n,k), k = 0..n), n = 0..10);
-
Mathematica
A264773[n_,k_] := Binomial[4*n - 3*k, n - k]; Table[A264773[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 06 2024 *)
Formula
T(n,k) = binomial(4*n - 3*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(4*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(3*n + 1)*binomial(4*n,n)*x^n.
Comments