A264781 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive pattern 45321; triangle T(n,k), n >= 0, 0 <= k <= max(0, floor((n-1)/4)), read by rows.
1, 1, 2, 6, 24, 119, 1, 708, 12, 4914, 126, 38976, 1344, 347765, 15110, 5, 3447712, 180736, 352, 37598286, 2308548, 9966, 447294144, 31481472, 225984, 5764747515, 457520055, 4753185, 45, 80011430240, 7068885600, 97954080, 21280, 1189835682714, 115808906178
Offset: 0
Examples
T(5,1) = 1: 45321. T(6,1) = 12: 156432, 256431, 356421, 453216, 456321, 463215, 546321, 563214, 564213, 564312, 564321, 645321. T(9,2) = 5: 786549321, 796548321, 896547321, 897546321, 897645321. Triangle T(n,k) begins: 00 : 1; 01 : 1; 02 : 2; 03 : 6; 04 : 24; 05 : 119, 1; 06 : 708, 12; 07 : 4914, 126; 08 : 38976, 1344; 09 : 347765, 15110, 5; 10 : 3447712, 180736, 352; 11 : 37598286, 2308548, 9966; 12 : 447294144, 31481472, 225984; 13 : 5764747515, 457520055, 4753185, 45; 14 : 80011430240, 7068885600, 97954080, 21280;
Links
- Alois P. Heinz, Rows n = 0..170, flattened
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes, 2011.
- Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125; see Theorem 3.2 (p. 116) with m = a = 3.
- Petros Hadjicostas, Maple program for a recurrence.
Crossrefs
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add( b(u+j-1, o-j, `if`(u+j-3
0, -1, `if`(t=-1, -2, 0)))), j=1..u))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..17); -
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[ b[u+j-1, o-j, If[u+j-3 < j, 0, j]], {j, 1, o}] + Expand[ If[t == -2, x, 1]*Sum[b[u-j, o+j-1, If[j < t || t == -2, 0, If[t > 0, -1, If[t == -1, -2, 0]]]], {j, 1, u}]]]; T[n_] := CoefficientList[b[n, 0, 0], x]; T /@ Range[0, 17] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)
Formula
Sum_{k > 0} k * T(n,k) = A062199(n-5) for n > 4.
Comments