cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264781 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive pattern 45321; triangle T(n,k), n >= 0, 0 <= k <= max(0, floor((n-1)/4)), read by rows.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 1, 708, 12, 4914, 126, 38976, 1344, 347765, 15110, 5, 3447712, 180736, 352, 37598286, 2308548, 9966, 447294144, 31481472, 225984, 5764747515, 457520055, 4753185, 45, 80011430240, 7068885600, 97954080, 21280, 1189835682714, 115808906178
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2015

Keywords

Comments

Consecutive patterns 12354, 21345, 54312 give the same triangle.
The attached Maple program gives a recurrence for the o.g.f. of each row in terms of u. Using that recurrence we may get any row or column from this irregular triangular array T(n,k). The recurrence follows from manipulation of the bivariate o.g.f./e.g.f. 1/W(u,z) = Sum_{n, k >= 0} T(n, k)*u^k*z^n/n!, whose reciprocal W(u,z) is the solution of the o.d.e. in Theorem 3.2 in Elizalde and Noy (2003) (with m = a = 3). - Petros Hadjicostas, Nov 05 2019

Examples

			T(5,1) = 1: 45321.
T(6,1) = 12: 156432, 256431, 356421, 453216, 456321, 463215, 546321, 563214, 564213, 564312, 564321, 645321.
T(9,2) = 5: 786549321, 796548321, 896547321, 897546321, 897645321.
Triangle T(n,k) begins:
00 :           1;
01 :           1;
02 :           2;
03 :           6;
04 :          24;
05 :         119,          1;
06 :         708,         12;
07 :        4914,        126;
08 :       38976,       1344;
09 :      347765,      15110,        5;
10 :     3447712,     180736,      352;
11 :    37598286,    2308548,     9966;
12 :   447294144,   31481472,   225984;
13 :  5764747515,  457520055,  4753185,    45;
14 : 80011430240, 7068885600, 97954080, 21280;
		

Crossrefs

Columns k=0-1 give: A202213, A264896.
Row sums give A000142.
T(4n+1,n) gives A007696.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
           b(u+j-1, o-j, `if`(u+j-30, -1, `if`(t=-1, -2, 0)))), j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..17);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[
         b[u+j-1, o-j, If[u+j-3 < j, 0, j]], {j, 1, o}] + Expand[
         If[t == -2, x, 1]*Sum[b[u-j, o+j-1, If[j < t || t == -2, 0,
         If[t > 0, -1, If[t == -1, -2, 0]]]], {j, 1, u}]]];
    T[n_] := CoefficientList[b[n, 0, 0], x];
    T /@ Range[0, 17] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)

Formula

Sum_{k > 0} k * T(n,k) = A062199(n-5) for n > 4.