cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A275062 Number A(n,k) of permutations p of [n] such that p(i)-i is a multiple of k for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 24, 1, 1, 1, 1, 1, 4, 120, 1, 1, 1, 1, 1, 2, 12, 720, 1, 1, 1, 1, 1, 1, 4, 36, 5040, 1, 1, 1, 1, 1, 1, 2, 8, 144, 40320, 1, 1, 1, 1, 1, 1, 1, 4, 24, 576, 362880, 1, 1, 1, 1, 1, 1, 1, 2, 8, 72, 2880, 3628800, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			A(5,0) = A(5,5) = 1: 12345.
A(5,1) = 5! = 120: all permutations of {1,2,3,4,5}.
A(5,2) = 12: 12345, 12543, 14325, 14523, 32145, 32541, 34125, 34521, 52143, 52341, 54123, 54321.
A(5,3) = 4: 12345, 15342, 42315, 45312.
A(5,4) = 2: 12345, 52341.
A(7,4) = 8: 1234567, 1274563, 1634527, 1674523, 5234167, 5274163, 5634127, 5674123.
Square array A(n,k) begins:
  1,       1,     1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,       1,     1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,       2,     1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,       6,     2,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,      24,     4,   2,   1,  1,  1, 1, 1, 1, 1, ...
  1,     120,    12,   4,   2,  1,  1, 1, 1, 1, 1, ...
  1,     720,    36,   8,   4,  2,  1, 1, 1, 1, 1, ...
  1,    5040,   144,  24,   8,  4,  2, 1, 1, 1, 1, ...
  1,   40320,   576,  72,  16,  8,  4, 2, 1, 1, 1, ...
  1,  362880,  2880, 216,  48, 16,  8, 4, 2, 1, 1, ...
  1, 3628800, 14400, 864, 144, 32, 16, 8, 4, 2, 1, ...
		

Crossrefs

A(k*n,n) for k=1..4 give: A000012, A000079, A000400, A009968.
Cf. A225816.

Programs

  • Maple
    A:= (n, k)-> mul(floor((n+i)/k)!, i=0..k-1):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := Product[Floor[(n+i)/k]!, {i, 0, k-1}];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 26 2019, from Maple *)

Formula

A(n,k) = Product_{i=0..k-1} floor((n+i)/k)!.
A(k*n,k) = (n!)^k = A225816(k,n).
For k > 0, A(n, k) ~ (2*Pi*n)^((k - 1)/2) * n! / k^(n + k/2). - Vaclav Kotesovec, Oct 02 2018

A264818 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with rows nondecreasing modulo 3 and columns nondecreasing modulo 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 8, 4, 1, 4, 44, 59, 14, 1, 8, 348, 1644, 743, 47, 1, 24, 3946, 83599, 142096, 17869, 201, 1, 72, 52524, 6680669, 50750671, 19492778, 530230, 1331, 2, 216, 1041936, 731477306
Offset: 1

Views

Author

R. H. Hardin, Nov 25 2015

Keywords

Comments

Table starts
.1....1......1........2........4.......8........24......72.216
.1....1......8.......44......348....3946.....52524.1041936
.1....4.....59.....1644....83599.6680669.731477306
.1...14....743...142096.50750671
.1...47..17869.19492778
.1..201.530230
.1.1331
.2

Examples

			Some solutions for n=4 k=4
..0.15..7..8....0..7..1.11....7.14..2..8....9..0.10..7....0.15..7..1
.10..2.14.11...14..2..8..5....0.15.12..1....3.15.11.14...10..2.14..8
..3..9..1..5...15..9..3.12....3..9..6.11...12..2..5..8...12..9..4.11
.12..6..4.13....6..4.10.13....4.10.13..5....6..4.13..1....6..3.13..5
		

Crossrefs

Column 1 is A264791.
Row 1 is A264557.

A264831 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with rows nondecreasing modulo 4 and columns nondecreasing modulo 7.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 2, 15, 33, 7, 1, 4, 134, 495, 288, 27, 1, 8, 978, 17181, 32296, 5400, 84, 1, 16, 10370, 881444, 4911976, 2648254, 165333, 533, 2, 48, 114292, 43181739
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2015

Keywords

Comments

Table starts
.1...1......1.......1.......2......4........8.....16.48
.1...2......4......15.....134....978....10370.114292
.1...3.....33.....495...17181.881444.43181739
.1...7....288...32296.4911976
.1..27...5400.2648254
.1..84.165333
.1.533
.2

Examples

			Some solutions for n=4 k=4
..0..9..1.14...14..3.15..7...14.15..7..3....0..1.15..7....4..8..0.14
..8..5..2..7....0..4..1..9....0..4..1.10....8.12..9.14...11.15..7..3
..4..6.10.15....8.12..2.11....8.12..2.11....4..6..2.10...12..9..1.10
.12.13.11..3...13..5.10..6....9.13..5..6....5.13..3.11....5.13..2..6
		

Crossrefs

Column 1 is A264791.
Row 1 is A264635.

A264837 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with rows nondecreasing modulo 5 and columns nondecreasing modulo 7.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 15, 22, 8, 1, 2, 68, 409, 271, 46, 1, 4, 401, 4800, 13814, 2703, 182, 1, 8, 2179, 147550, 1059838, 742363, 61692, 701, 2, 16, 23229, 5692511, 243485517
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2015

Keywords

Comments

Table starts
.1...1.....1......1.......1.........2.......4.....8.16
.1...2.....2.....15......68.......401....2179.23229
.1...2....22....409....4800....147550.5692511
.1...8...271..13814.1059838.243485517
.1..46..2703.742363
.1.182.61692
.1.701
.2

Examples

			Some solutions for n=4 k=4
..0..7..8.14....0..8.14..9....7..8..9.14....0..7..9.14...15..0..8.14
..1..2..4..9....1.12..7..3....0..1.12..2...15..1..3..8...11..1..2..7
.15.10.12..3...15..5..2..4...15.10..6.11....2.12.13..4....5.10.12..9
..5.11..6.13...10..6.11.13....5..3.13..4...10..5..6.11....6..3.13..4
		

Crossrefs

Column 1 is A264791.
Row 1 is A264656.

A264862 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with rows nondecreasing modulo 6 and columns nondecreasing modulo 7.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 12, 30, 8, 1, 1, 72, 839, 839, 47, 1, 2, 516, 16365, 39131, 15000, 422, 1, 4, 2727, 550479, 4497392, 3474446, 530302, 1625, 2, 8, 29935, 8299492, 285666842
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2015

Keywords

Comments

Table starts
.1....1......1.......1.......1.........1.......2.....4.8
.1....2......5......12......72.......516....2727.29935
.1....5.....30.....839...16365....550479.8299492
.1....8....839...39131.4497392.285666842
.1...47..15000.3474446
.1..422.530302
.1.1625
.2

Examples

			Some solutions for n=4 k=4
..0..7..1.14....0..1..7..2....7.14..8.15....0..7.14.15....0.14..8.15
..8..9..3.15...14..8.15.10...12..0..1..3....8..3..9.11...12..7..3..9
.12..2..4.10...13..9..3..4...13..2..9..4....1.13..2..4....6..1..4.10
..6.13..5.11....6.12..5.11....6.10..5.11...12..6.10..5...13..2.11..5
		

Crossrefs

Column 1 is A264791.
Row 1 is A264701.
Showing 1-5 of 5 results.