cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A010551 Multiply successively by 1,1,2,2,3,3,4,4,..., n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 36, 144, 576, 2880, 14400, 86400, 518400, 3628800, 25401600, 203212800, 1625702400, 14631321600, 131681894400, 1316818944000, 13168189440000, 144850083840000, 1593350922240000, 19120211066880000, 229442532802560000, 2982752926433280000
Offset: 0

Views

Author

Keywords

Comments

From Emeric Deutsch, Dec 14 2008: (Start)
Number of permutations of {1,2,...,n-1} having a single run of odd entries. Example: a(5)=12 because we have 1324,1342,3124,3142,2134,4132,2314,4312, 2413, 4213, 2431 and 4231.
a(n) = A152666(n-1,1). (End)
a(n+1) gives the permanent of the n X n matrix whose (i,j)-element is i+j-1 modulo 2. - John W. Layman, Jan 03 2011
From Daniel Forgues, May 20 2011: (Start)
a(0) = 1 since it is the empty product.
A010551(n-2), n >= 2, equal to (ceiling((n-2)/2))! * (floor((n-2)/2))!, gives the number of arrangements of n-2 entries from 2 to n-1, starting with an even entry and where the parity of adjacent entries alternates. This is the number of arrangements to investigate for row n of a prime pyramid (A051237). (End)
Partial products of A008619. - Reinhard Zumkeller, Apr 02 2012
Also size of the equivalence class of S_n containing the identity permutation under transformations of positionally adjacent elements of the form abc <--> acb where a < b < c, cf. A210667 (equivalently under such transformations of the form abc <--> bac where a < b < c.) - Tom Roby, May 15 2012
Row sums of A246117. - Peter Bala, Aug 15 2014
a(n) is the number of parity-alternating permutations of size n. A permutation is parity-alternating if it sends even integers to even, and odd to odd. - Per W. Alexandersson, Jun 06 2022
n divides a(n) if and only if n is not prime. Since a(n) = floor(n/2)!*floor((n+1)/2)!, if n is prime then n is not a factor of a(n). All the prime factors of a(n) are in fact less than or equal to (n+1)/2. If n is composite, then it's possible to write it as p*q with p and q less than or equal to n/2. So p and q are factors of a(n). - Davide Oliveri, Apr 01 2023
Number of permutations of {1, 2, ..., n-1} where each entry is not greater than twice the previous entry. - Dewangga Putra Sheradhien, Jul 13 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 144*x^7 + 576*x^8 + ...
For n = 7, a(n) = 1*1*2*2*3*3*4 (7 factors), which is 144. - _Michael B. Porter_, Jul 03 2016
		

Crossrefs

Column k=2 of A275062.

Programs

  • Haskell
    a010551 n = a010551_list !! n
    a010551_list = scanl (*) 1 a008619_list
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Magma
    [Factorial(n div 2)*Factorial((n+1) div 2): n in [0..25]]; // Vincenzo Librandi Jan 17 2018
    
  • Maple
    A010551 := proc(n)
        option remember;
        if n <= 1 then
            1
        else
            procname(n-1) *trunc( (n+1)/2 );
        fi;
    end:
  • Mathematica
    FoldList[ Times, 1, Flatten@ Array[ {#, #} &, 11]] (* Robert G. Wilson v, Jul 14 2010 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); 1/polcoeff(besseli(0,2*X)+X*besseli(1,2*X),n,x)} \\ Paul D. Hanna, Apr 07 2005
    
  • PARI
    A010551(n)=(n\2)!*((n+1)\2)! \\ Michael Somos, Dec 29 2012, edited by M. F. Hasler, Nov 26 2017
    
  • Python
    def O(f):
        c = 1
        while len(f) > 1:
            f.sort()
            m = abs(f[0] - f[1])
            c *= m
            f[0] = m
            f.pop(1)
        return c
    a = lambda n: O(list(range(1, n+1)))
    print([a(n) for n in range(0, 26)]) # DarĂ­o Clavijo, Aug 24 2024

Formula

a(n) = floor(n/2)!*floor((n+1)/2)! is the number of permutations p of {1, 2, 3, ..., n} such that for every i, i and p(i) have the same parity, i.e., p(i) - i is even. - Avi Peretz (njk(AT)netvision.net.il), Feb 22 2001
a(n) = n!/binomial(n, floor(n/2)). - Paul Barry, Sep 12 2004
G.f.: Sum_{n>=0} x^n/a(n) = besseli(0, 2*x) + x*besseli(1, 2*x). - Paul D. Hanna, Apr 07 2005
E.g.f.: 1/(1-x/2) + (1/2)/(1-x/2)*arccos(1-x^2/2)/sqrt(1-x^2/4). - Paul D. Hanna, Aug 28 2005
G.f.: G(0) where G(k) = 1 + (k+1)*x/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 28 2012
D-finite with recurrence: 4*a(n) - 2*a(n-1) - n*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
a(n) = a(n-1) * (a(n-2) + a(n-3)) / a(n-3) for all n >= 3. - Michael Somos, Dec 29 2012
G.f.: 1 + x + x^2*(1 + x*(G(0) - 1)/(x-1)) where G(k) = 1 - (k+2)/(1-x/(x - 1/(1 - (k+2)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)/(1-x/(x - 1/(1 - (k+1)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1 + x*G(0), where G(k) = 1 + x*(k+1)/(1 - x*(k+2)/(x*(k+2) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
G.f.: Q(0), where Q(k) = 1 + x*(k+1)/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
Sum_{n >= 1} 1/a(n) = A130820. - Peter Bala, Jul 02 2016
a(n) ~ sqrt(Pi*n) * n! / 2^(n + 1/2). - Vaclav Kotesovec, Oct 02 2018
Sum_{n>=0} (-1)^n/a(n) = A229020. - Amiram Eldar, Apr 12 2021

A264557 Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 3.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 24, 72, 216, 864, 3456, 13824, 69120, 345600, 1728000, 10368000, 62208000, 373248000, 2612736000, 18289152000, 128024064000, 1024192512000, 8193540096000, 65548320768000, 589934886912000, 5309413982208000, 47784725839872000
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2015

Keywords

Comments

Column 1 of A264560.

Examples

			All solutions for n=4
..0....3
..3....0
..1....1
..2....2
		

Crossrefs

Cf. A264560.
Column k=3 of A275062.

Programs

  • Mathematica
    Table[Product[Floor[(n + i)/3]!, {i, 0, 2}], {n, 1, 30}] (* Vaclav Kotesovec, Oct 02 2018 *)

Formula

a(n) = Product_{i=0..2} ceiling((n-i)/3)!. - Alois P. Heinz, Jul 09 2016
a(n) ~ 2 * Pi * (n+1)! / 3^(n + 3/2). - Vaclav Kotesovec, Oct 02 2018

A264635 Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 16, 48, 144, 432, 1296, 5184, 20736, 82944, 331776, 1658880, 8294400, 41472000, 207360000, 1244160000, 7464960000, 44789760000, 268738560000, 1881169920000, 13168189440000, 92177326080000, 645241282560000, 5161930260480000
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2015

Keywords

Examples

			All solutions for n=6:
  0    4    4    0
  4    0    0    4
  1    1    5    5
  5    5    1    1
  2    2    2    2
  3    3    3    3
		

Crossrefs

Column 1 of A264638.
Column k=4 of A275062.

Programs

  • Mathematica
    Table[Product[Floor[(n + i)/4]!, {i, 0, 3}], {n, 1, 30}] (* Vaclav Kotesovec, Oct 02 2018 *)

Formula

a(n) = Product_{i=0..3} floor((n+i)/4)!. - Alois P. Heinz, Jul 12 2016
a(n) ~ Pi^(3/2) * n^(3/2) * n! / 2^(2*n + 5/2). - Vaclav Kotesovec, Oct 02 2018
Sum_{n>0} floor((n-1)/4)/a(n) = 1. - Peter McNair, May 29 2022

A264656 Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 96, 288, 864, 2592, 7776, 31104, 124416, 497664, 1990656, 7962624, 39813120, 199065600, 995328000, 4976640000, 24883200000, 149299200000, 895795200000, 5374771200000, 32248627200000, 193491763200000, 1354442342400000
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2015

Keywords

Comments

Column 1 of A264659.

Examples

			All solutions for n=8
..5....0....0....5....5....5....0....0
..0....5....5....0....0....0....5....5
..1....6....6....6....6....1....1....1
..6....1....1....1....1....6....6....6
..7....7....2....2....7....2....7....2
..2....2....7....7....2....7....2....7
..3....3....3....3....3....3....3....3
..4....4....4....4....4....4....4....4
		

Crossrefs

Cf. A264659.
Column k=5 of A275062.

Programs

  • Mathematica
    Table[Product[Floor[(n + i)/5]!, {i, 0, 4}], {n, 1, 30}] (* Vaclav Kotesovec, Oct 02 2018 *)

Formula

a(n) = Product_{i=0..4} floor((n+i)/5)!. - Alois P. Heinz, Jul 12 2016
a(n) ~ (2*Pi*n)^2 * n! / 5^(n + 5/2). - Vaclav Kotesovec, Oct 02 2018

A264701 Number of n X 1 arrays of permutations of 0..n-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 192, 576, 1728, 5184, 15552, 46656, 186624, 746496, 2985984, 11943936, 47775744, 191102976, 955514880, 4777574400, 23887872000, 119439360000, 597196800000, 2985984000000, 17915904000000, 107495424000000, 644972544000000
Offset: 1

Views

Author

R. H. Hardin, Nov 21 2015

Keywords

Comments

Column 1 of A264704.

Examples

			All solutions for n=8
..6....6....0....0
..0....0....6....6
..7....1....1....7
..1....7....7....1
..2....2....2....2
..3....3....3....3
..4....4....4....4
..5....5....5....5
		

Crossrefs

Cf. A264704.
Column k=6 of A275062.

Programs

  • Mathematica
    Table[Product[Floor[(n + i)/6]!, {i, 0, 5}], {n, 1, 40}] (* Vaclav Kotesovec, Oct 02 2018 *)

Formula

a(n) = Product_{i=0..5} floor((n+i)/6)!. - Alois P. Heinz, Jul 12 2016
a(n) ~ (2*Pi*n)^(5/2) * n! / 6^(n + 3). - Vaclav Kotesovec, Oct 02 2018

A264791 Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 1119744, 4478976, 17915904, 71663616, 286654464, 1146617856, 4586471424, 22932357120, 114661785600, 573308928000, 2866544640000, 14332723200000, 71663616000000
Offset: 1

Views

Author

R. H. Hardin, Nov 25 2015

Keywords

Comments

Column 1 of A264794.

Examples

			All solutions for n=11
..0....0....7....0....7....0....7....7....7....7....0....0....0....7....0....7
..7....7....0....7....0....7....0....0....0....0....7....7....7....0....7....0
..1....1....8....8....8....1....1....8....1....8....8....8....8....1....1....1
..8....8....1....1....1....8....8....1....8....1....1....1....1....8....8....8
..9....2....2....9....9....2....9....2....2....9....9....2....2....9....9....2
..2....9....9....2....2....9....2....9....9....2....2....9....9....2....2....9
..3....3...10....3....3...10...10....3...10...10...10...10....3....3...10....3
.10...10....3...10...10....3....3...10....3....3....3....3...10...10....3...10
..4....4....4....4....4....4....4....4....4....4....4....4....4....4....4....4
..5....5....5....5....5....5....5....5....5....5....5....5....5....5....5....5
..6....6....6....6....6....6....6....6....6....6....6....6....6....6....6....6
		

Crossrefs

Cf. A264794.
Column k=7 of A275062.

Programs

  • Mathematica
    Table[Product[Floor[(n + i)/7]!, {i, 0, 6}], {n, 1, 40}] (* Vaclav Kotesovec, Oct 02 2018 *)

Formula

a(n) = Product_{i=0..6} floor((n+i)/7)!. - Alois P. Heinz, Jul 12 2016
a(n) ~ (2*Pi*n)^3 * n! / 7^(n + 7/2). - Vaclav Kotesovec, Oct 02 2018

A317980 a(n) = Product_{i=1..n} floor(5*i/2).

Original entry on oeis.org

2, 10, 70, 700, 8400, 126000, 2142000, 42840000, 942480000, 23562000000, 636174000000, 19085220000000, 610727040000000, 21375446400000000, 790891516800000000, 31635660672000000000, 1328697748224000000000, 59791398670080000000000, 2810195737493760000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 02 2018

Keywords

Comments

If p > 2 and p is odd, then Product_{i=1..n} floor(p*i/2) ~ (p/2)^n * n! * 2^(1/(2*p)) * sqrt(Pi) / (Gamma(1/2 - 1/(2*p)) * n^(1/(2*p))).

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[i*5/2], {i, 1, n}], {n, 1, 20}]
    RecurrenceTable[{4 a[n] - 10 a[n - 1] - 5 (n - 1) (5 n - 6) a[n - 2] == 0, a[1] == 2, a[2] == 10}, a, {n, 1, 20}] (* Bruno Berselli, Oct 03 2018 *)
    FoldList[Times,Floor[5*Range[20]/2]] (* Harvey P. Dale, Sep 17 2020 *)

Formula

a(n) ~ (5/2)^n * n! * 2^(1/10) * sqrt(Pi) / (Gamma(2/5) * n^(1/10)).
Recurrence: 4*a(n) - 10*a(n-1) - 5*(n - 1)*(5*n - 6)*a(n-2) = 0, with n >= 3. - Bruno Berselli, Oct 03 2018

A319948 a(n) = Product_{i=1..n} floor(3*i/2).

Original entry on oeis.org

1, 3, 12, 72, 504, 4536, 45360, 544320, 7076160, 106142400, 1698278400, 30569011200, 580811212800, 12197035468800, 268334780313600, 6440034727526400, 161000868188160000, 4347023441080320000, 121716656350248960000, 3651499690507468800000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[i*3/2], {i, 1, n}], {n, 1, 20}]
    RecurrenceTable[{4 a[n] - 6 a[n - 1] - 3 (n - 1) (3 n - 4) a[n - 2] == 0, a[1] == 1, a[2] == 3}, a, {n, 1, 20}] (* Bruno Berselli, Oct 03 2018 *)

Formula

a(n) ~ (3/2)^n * n! * 2^(1/6) * sqrt(Pi) / (Gamma(1/3) * n^(1/6)).
Recurrence: 4*a(n) - 6*a(n-1) - 3*(n - 1)*(3*n - 4)*a(n-2) = 0, with n >= 3. - Bruno Berselli, Oct 03 2018

A319949 a(n) = Product_{i=1..n} floor(4*i/3).

Original entry on oeis.org

1, 2, 8, 40, 240, 1920, 17280, 172800, 2073600, 26956800, 377395200, 6038323200, 102651494400, 1847726899200, 36954537984000, 776045297664000, 17072996548608000, 409751917166592000, 10243797929164800000, 266338746158284800000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[i*4/3], {i, 1, n}], {n, 1, 20}]
    RecurrenceTable[{27*(3*n - 7)*a[n] == 54*(2*n - 5)*a[n-1] + 12*(12*n^2 - 42*n + 35)*a[n-2] + 8*(n-2)*(2*n - 5)*(3*n - 4)*(4*n - 9)*a[n-3], a[1]==1, a[2]==2, a[3]==8}, a, {n, 1, 20}]
    FoldList[Times,Floor[4 Range[20]/3]] (* Harvey P. Dale, Mar 21 2024 *)
  • PARI
    a(n) = prod(i=1, n, (4*i)\3); \\ Michel Marcus, Oct 03 2018

Formula

a(n) ~ (4/3)^n * n! * 2*sqrt(Pi) / (3^(1/4) * Gamma(1/4) * n^(1/4)).
Recurrence: 27*(3*n - 7)*a(n) = 54*(2*n - 5)*a(n-1) + 12*(12*n^2 - 42*n + 35)*a(n-2) + 8*(n-2)*(2*n - 5)*(3*n - 4)*(4*n - 9)*a(n-3).

A319950 a(n) = Product_{i=1..n} floor(5*i/3).

Original entry on oeis.org

1, 3, 15, 90, 720, 7200, 79200, 1029600, 15444000, 247104000, 4447872000, 88957440000, 1868106240000, 42966443520000, 1074161088000000, 27928188288000000, 781989272064000000, 23459678161920000000, 727250023019520000000, 23999250759644160000000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 02 2018

Keywords

Comments

If p > 3 and gcd(p,3)=1 then Product_{i=1..n} floor(i*p/3) ~ (p/3)^n * n! * 2*Pi * 3^(1/p - 1/2) / (c(p) * n^(1/p)), where
c(p) = Gamma(2/3 - 2/(3*p)) * Gamma(1/3 - 1/(3*p)) if mod(p, 3) = 1,
c(p) = Gamma(1/3 - 2/(3*p)) * Gamma(2/3 - 1/(3*p)) if mod(p, 3) = 2.
In general, if q > 1, p > q and gcd(p,q)=1, then Product_{i=1..n} floor(i*p/q) ~ c(p,q) * (p/q)^n * n! / n^((q-1)/(2*p)), where c(p,q) is a constant.

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[i*5/3], {i, 1, n}], {n, 1, 20}]
    RecurrenceTable[{27*(15*n - 32)*a[n] == 675*(n-2)*a[n-1] + 15*(75*n^2 - 255*n + 194)*a[n-2] + 5*(n-2)*(5*n - 12)*(5*n - 11)*(15*n - 17)*a[n-3], a[1]==1, a[2]==3, a[3]==15}, a, {n, 1, 20}]
  • PARI
    a(n) = prod(i=1, n, (5*i)\3); \\ Michel Marcus, Oct 03 2018

Formula

a(n) ~ (5/3)^n * n! * 2*Pi / (3^(3/10) * Gamma(1/5) * Gamma(3/5) * n^(1/5)).
Recurrence: 27*(15*n - 32)*a(n) = 675*(n-2)*a(n-1) + 15*(75*n^2 - 255*n + 194)*a(n-2) + 5*(n-2)*(5*n - 12)*(5*n - 11)*(15*n - 17)*a(n-3).
Showing 1-10 of 14 results. Next