A010551
Multiply successively by 1,1,2,2,3,3,4,4,..., n >= 1, a(0) = 1.
Original entry on oeis.org
1, 1, 1, 2, 4, 12, 36, 144, 576, 2880, 14400, 86400, 518400, 3628800, 25401600, 203212800, 1625702400, 14631321600, 131681894400, 1316818944000, 13168189440000, 144850083840000, 1593350922240000, 19120211066880000, 229442532802560000, 2982752926433280000
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 144*x^7 + 576*x^8 + ...
For n = 7, a(n) = 1*1*2*2*3*3*4 (7 factors), which is 144. - _Michael B. Porter_, Jul 03 2016
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
- Edinah K. Gnang and Isaac Wass, Growing Graceful and Harmonious Trees, arXiv:1808.05551 [math.CO], 2018-2020. See proposition 1.
- Frether Getachew Kebede and Fanja Rakotondrajao, Parity alternating permutations starting with an odd integer, arXiv:2101.09125 [math.CO], 2021.
- Steven Linton, James Propp, Tom Roby, and Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), #12.9.1.
-
a010551 n = a010551_list !! n
a010551_list = scanl (*) 1 a008619_list
-- Reinhard Zumkeller, Apr 02 2012
-
[Factorial(n div 2)*Factorial((n+1) div 2): n in [0..25]]; // Vincenzo Librandi Jan 17 2018
-
A010551 := proc(n)
option remember;
if n <= 1 then
1
else
procname(n-1) *trunc( (n+1)/2 );
fi;
end:
-
FoldList[ Times, 1, Flatten@ Array[ {#, #} &, 11]] (* Robert G. Wilson v, Jul 14 2010 *)
-
{a(n)=local(X=x+x*O(x^n)); 1/polcoeff(besseli(0,2*X)+X*besseli(1,2*X),n,x)} \\ Paul D. Hanna, Apr 07 2005
-
A010551(n)=(n\2)!*((n+1)\2)! \\ Michael Somos, Dec 29 2012, edited by M. F. Hasler, Nov 26 2017
-
def O(f):
c = 1
while len(f) > 1:
f.sort()
m = abs(f[0] - f[1])
c *= m
f[0] = m
f.pop(1)
return c
a = lambda n: O(list(range(1, n+1)))
print([a(n) for n in range(0, 26)]) # DarĂo Clavijo, Aug 24 2024
A264557
Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 3.
Original entry on oeis.org
1, 1, 1, 2, 4, 8, 24, 72, 216, 864, 3456, 13824, 69120, 345600, 1728000, 10368000, 62208000, 373248000, 2612736000, 18289152000, 128024064000, 1024192512000, 8193540096000, 65548320768000, 589934886912000, 5309413982208000, 47784725839872000
Offset: 1
All solutions for n=4
..0....3
..3....0
..1....1
..2....2
-
Table[Product[Floor[(n + i)/3]!, {i, 0, 2}], {n, 1, 30}] (* Vaclav Kotesovec, Oct 02 2018 *)
A264635
Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 4.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 8, 16, 48, 144, 432, 1296, 5184, 20736, 82944, 331776, 1658880, 8294400, 41472000, 207360000, 1244160000, 7464960000, 44789760000, 268738560000, 1881169920000, 13168189440000, 92177326080000, 645241282560000, 5161930260480000
Offset: 1
All solutions for n=6:
0 4 4 0
4 0 0 4
1 1 5 5
5 5 1 1
2 2 2 2
3 3 3 3
-
Table[Product[Floor[(n + i)/4]!, {i, 0, 3}], {n, 1, 30}] (* Vaclav Kotesovec, Oct 02 2018 *)
A264656
Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 5.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 96, 288, 864, 2592, 7776, 31104, 124416, 497664, 1990656, 7962624, 39813120, 199065600, 995328000, 4976640000, 24883200000, 149299200000, 895795200000, 5374771200000, 32248627200000, 193491763200000, 1354442342400000
Offset: 1
All solutions for n=8
..5....0....0....5....5....5....0....0
..0....5....5....0....0....0....5....5
..1....6....6....6....6....1....1....1
..6....1....1....1....1....6....6....6
..7....7....2....2....7....2....7....2
..2....2....7....7....2....7....2....7
..3....3....3....3....3....3....3....3
..4....4....4....4....4....4....4....4
-
Table[Product[Floor[(n + i)/5]!, {i, 0, 4}], {n, 1, 30}] (* Vaclav Kotesovec, Oct 02 2018 *)
A264701
Number of n X 1 arrays of permutations of 0..n-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 6.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 192, 576, 1728, 5184, 15552, 46656, 186624, 746496, 2985984, 11943936, 47775744, 191102976, 955514880, 4777574400, 23887872000, 119439360000, 597196800000, 2985984000000, 17915904000000, 107495424000000, 644972544000000
Offset: 1
All solutions for n=8
..6....6....0....0
..0....0....6....6
..7....1....1....7
..1....7....7....1
..2....2....2....2
..3....3....3....3
..4....4....4....4
..5....5....5....5
-
Table[Product[Floor[(n + i)/6]!, {i, 0, 5}], {n, 1, 40}] (* Vaclav Kotesovec, Oct 02 2018 *)
A264791
Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 7.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 1119744, 4478976, 17915904, 71663616, 286654464, 1146617856, 4586471424, 22932357120, 114661785600, 573308928000, 2866544640000, 14332723200000, 71663616000000
Offset: 1
All solutions for n=11
..0....0....7....0....7....0....7....7....7....7....0....0....0....7....0....7
..7....7....0....7....0....7....0....0....0....0....7....7....7....0....7....0
..1....1....8....8....8....1....1....8....1....8....8....8....8....1....1....1
..8....8....1....1....1....8....8....1....8....1....1....1....1....8....8....8
..9....2....2....9....9....2....9....2....2....9....9....2....2....9....9....2
..2....9....9....2....2....9....2....9....9....2....2....9....9....2....2....9
..3....3...10....3....3...10...10....3...10...10...10...10....3....3...10....3
.10...10....3...10...10....3....3...10....3....3....3....3...10...10....3...10
..4....4....4....4....4....4....4....4....4....4....4....4....4....4....4....4
..5....5....5....5....5....5....5....5....5....5....5....5....5....5....5....5
..6....6....6....6....6....6....6....6....6....6....6....6....6....6....6....6
-
Table[Product[Floor[(n + i)/7]!, {i, 0, 6}], {n, 1, 40}] (* Vaclav Kotesovec, Oct 02 2018 *)
A317980
a(n) = Product_{i=1..n} floor(5*i/2).
Original entry on oeis.org
2, 10, 70, 700, 8400, 126000, 2142000, 42840000, 942480000, 23562000000, 636174000000, 19085220000000, 610727040000000, 21375446400000000, 790891516800000000, 31635660672000000000, 1328697748224000000000, 59791398670080000000000, 2810195737493760000000000
Offset: 1
-
Table[Product[Floor[i*5/2], {i, 1, n}], {n, 1, 20}]
RecurrenceTable[{4 a[n] - 10 a[n - 1] - 5 (n - 1) (5 n - 6) a[n - 2] == 0, a[1] == 2, a[2] == 10}, a, {n, 1, 20}] (* Bruno Berselli, Oct 03 2018 *)
FoldList[Times,Floor[5*Range[20]/2]] (* Harvey P. Dale, Sep 17 2020 *)
A319948
a(n) = Product_{i=1..n} floor(3*i/2).
Original entry on oeis.org
1, 3, 12, 72, 504, 4536, 45360, 544320, 7076160, 106142400, 1698278400, 30569011200, 580811212800, 12197035468800, 268334780313600, 6440034727526400, 161000868188160000, 4347023441080320000, 121716656350248960000, 3651499690507468800000
Offset: 1
-
Table[Product[Floor[i*3/2], {i, 1, n}], {n, 1, 20}]
RecurrenceTable[{4 a[n] - 6 a[n - 1] - 3 (n - 1) (3 n - 4) a[n - 2] == 0, a[1] == 1, a[2] == 3}, a, {n, 1, 20}] (* Bruno Berselli, Oct 03 2018 *)
A319949
a(n) = Product_{i=1..n} floor(4*i/3).
Original entry on oeis.org
1, 2, 8, 40, 240, 1920, 17280, 172800, 2073600, 26956800, 377395200, 6038323200, 102651494400, 1847726899200, 36954537984000, 776045297664000, 17072996548608000, 409751917166592000, 10243797929164800000, 266338746158284800000
Offset: 1
-
Table[Product[Floor[i*4/3], {i, 1, n}], {n, 1, 20}]
RecurrenceTable[{27*(3*n - 7)*a[n] == 54*(2*n - 5)*a[n-1] + 12*(12*n^2 - 42*n + 35)*a[n-2] + 8*(n-2)*(2*n - 5)*(3*n - 4)*(4*n - 9)*a[n-3], a[1]==1, a[2]==2, a[3]==8}, a, {n, 1, 20}]
FoldList[Times,Floor[4 Range[20]/3]] (* Harvey P. Dale, Mar 21 2024 *)
-
a(n) = prod(i=1, n, (4*i)\3); \\ Michel Marcus, Oct 03 2018
A319950
a(n) = Product_{i=1..n} floor(5*i/3).
Original entry on oeis.org
1, 3, 15, 90, 720, 7200, 79200, 1029600, 15444000, 247104000, 4447872000, 88957440000, 1868106240000, 42966443520000, 1074161088000000, 27928188288000000, 781989272064000000, 23459678161920000000, 727250023019520000000, 23999250759644160000000
Offset: 1
-
Table[Product[Floor[i*5/3], {i, 1, n}], {n, 1, 20}]
RecurrenceTable[{27*(15*n - 32)*a[n] == 675*(n-2)*a[n-1] + 15*(75*n^2 - 255*n + 194)*a[n-2] + 5*(n-2)*(5*n - 12)*(5*n - 11)*(15*n - 17)*a[n-3], a[1]==1, a[2]==3, a[3]==15}, a, {n, 1, 20}]
-
a(n) = prod(i=1, n, (5*i)\3); \\ Michel Marcus, Oct 03 2018
Showing 1-10 of 14 results.
Comments