A317980
a(n) = Product_{i=1..n} floor(5*i/2).
Original entry on oeis.org
2, 10, 70, 700, 8400, 126000, 2142000, 42840000, 942480000, 23562000000, 636174000000, 19085220000000, 610727040000000, 21375446400000000, 790891516800000000, 31635660672000000000, 1328697748224000000000, 59791398670080000000000, 2810195737493760000000000
Offset: 1
-
Table[Product[Floor[i*5/2], {i, 1, n}], {n, 1, 20}]
RecurrenceTable[{4 a[n] - 10 a[n - 1] - 5 (n - 1) (5 n - 6) a[n - 2] == 0, a[1] == 2, a[2] == 10}, a, {n, 1, 20}] (* Bruno Berselli, Oct 03 2018 *)
FoldList[Times,Floor[5*Range[20]/2]] (* Harvey P. Dale, Sep 17 2020 *)
A319949
a(n) = Product_{i=1..n} floor(4*i/3).
Original entry on oeis.org
1, 2, 8, 40, 240, 1920, 17280, 172800, 2073600, 26956800, 377395200, 6038323200, 102651494400, 1847726899200, 36954537984000, 776045297664000, 17072996548608000, 409751917166592000, 10243797929164800000, 266338746158284800000
Offset: 1
-
Table[Product[Floor[i*4/3], {i, 1, n}], {n, 1, 20}]
RecurrenceTable[{27*(3*n - 7)*a[n] == 54*(2*n - 5)*a[n-1] + 12*(12*n^2 - 42*n + 35)*a[n-2] + 8*(n-2)*(2*n - 5)*(3*n - 4)*(4*n - 9)*a[n-3], a[1]==1, a[2]==2, a[3]==8}, a, {n, 1, 20}]
FoldList[Times,Floor[4 Range[20]/3]] (* Harvey P. Dale, Mar 21 2024 *)
-
a(n) = prod(i=1, n, (4*i)\3); \\ Michel Marcus, Oct 03 2018
A319950
a(n) = Product_{i=1..n} floor(5*i/3).
Original entry on oeis.org
1, 3, 15, 90, 720, 7200, 79200, 1029600, 15444000, 247104000, 4447872000, 88957440000, 1868106240000, 42966443520000, 1074161088000000, 27928188288000000, 781989272064000000, 23459678161920000000, 727250023019520000000, 23999250759644160000000
Offset: 1
-
Table[Product[Floor[i*5/3], {i, 1, n}], {n, 1, 20}]
RecurrenceTable[{27*(15*n - 32)*a[n] == 675*(n-2)*a[n-1] + 15*(75*n^2 - 255*n + 194)*a[n-2] + 5*(n-2)*(5*n - 12)*(5*n - 11)*(15*n - 17)*a[n-3], a[1]==1, a[2]==3, a[3]==15}, a, {n, 1, 20}]
-
a(n) = prod(i=1, n, (5*i)\3); \\ Michel Marcus, Oct 03 2018
Showing 1-3 of 3 results.
Comments