A264815 Semirps: a semirp (or semi-r-p) is a semiprime r*p with r and p both reversed primes.
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 39, 49, 51, 55, 62, 65, 74, 77, 85, 91, 93, 111, 119, 121, 142, 143, 146, 155, 158, 169, 185, 187, 194, 202, 213, 214, 217, 219, 221, 226, 237, 259, 262, 289, 291, 298, 302, 303, 314, 321, 334, 339, 341, 355
Offset: 1
Examples
9 is in the list because 9 = 3*3 is a semiprime and reverse(3) = 3 is prime. 143 is in the list because 143 = 11*13 is a semiprime and both reverse(11) = 11 and reverse(13) = 31 are prime.
Links
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{nn=250},Take[Union[Times@@@Select[Tuples[IntegerReverse/@Prime[Range[nn]],2],AllTrue[#,PrimeQ]&]],60]] (* Harvey P. Dale, Apr 27 2025 *)
-
Sage
reverse = lambda n: sum([10^i*int(str(n)[i]) for i in range(len(str(n)))]) def is_semirp(n): F = factor(n) if sum([f[1] for f in F])==2: r, p = F[0][0], F[-1][0] if is_prime(reverse(r)) and is_prime(reverse(p)): return True [a for a in range(1,356) if is_semirp(a)] # Danny Rorabaugh, Nov 25 2015
Formula
[A007500]^2, sorted.
Comments