cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264828 Nonprimes that are not twice a prime.

Original entry on oeis.org

1, 8, 9, 12, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 26 2015

Keywords

Comments

Except for the initial 1, if n is in the sequence, so is k*n for all k > 1. So the odd semiprimes (A046315) and numbers of the form 4*p (A001749) where p is prime are core subsequences which give the initial terms of arithmetic progressions in this sequence. - Altug Alkan, Nov 29 2015

Crossrefs

Programs

  • Maple
    Primes, Nonprimes:= selectremove(isprime, {$1..1000}):
    sort(convert(Nonprimes minus map(`*`,Primes,2),list)); # Robert Israel, Nov 30 2015
  • Mathematica
    Select[Range@ 104, And[! PrimeQ@ #, Or[PrimeOmega@ # != 2, OddQ@ #]] &] (* Michael De Vlieger, Nov 27 2015 *)
    Select[Range@110, Nor[PrimeQ[#], PrimeQ[#/2]] &] (* Vincenzo Librandi, Jan 22 2016 *)
  • PARI
    print1(1, ", "); forcomposite(n=1, 1e3, if(n % 2 == 1 || !isprime(n/2), print1(n, ", "))) \\ Altug Alkan, Dec 01 2015
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A264828_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:not (isprime(n) or (n&1^1 and isprime(n>>1))),count(max(startvalue,1)))
    A264828_list = list(islice(A264828_gen(),20)) # Chai Wah Wu, Mar 26 2024
    
  • Python
    from sympy import primepi
    def A264828(n):
        def f(x): return int(n+primepi(x)+primepi(x>>1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 17 2024

Formula

a(n) = A009188(n-2) for n>=3. - Alois P. Heinz, Oct 17 2024