A264852 a(n) = n*(n + 1)*(n + 2)*(9*n - 7)/12.
0, 1, 22, 100, 290, 665, 1316, 2352, 3900, 6105, 9130, 13156, 18382, 25025, 33320, 43520, 55896, 70737, 88350, 109060, 133210, 161161, 193292, 230000, 271700, 318825, 371826, 431172, 497350, 570865, 652240, 742016, 840752, 949025, 1067430, 1196580, 1337106
Offset: 0
Links
- OEIS Wiki, Figurate numbers
- Eric Weisstein's World of Mathematics, Pyramidal Number
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(n+2)*(9*n-7)/12: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
-
Mathematica
Table[n (n + 1) (n + 2) (9 n - 7)/12, {n, 0, 50}]
-
PARI
a(n)=n*(n+1)*(n+2)*(9*n-7)/12 \\ Charles R Greathouse IV, Jul 26 2016
Formula
G.f.: x*(1 + 17*x)/(1 - x)^5.
a(n) = Sum_{k = 0..n} A172082(k).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015
Comments