A264869 Triangular array: For n >= 2 and 0 <= k <= n - 2, T(n, k) equals the number of rooted duplication trees on n gene segments whose leftmost visible duplication event is (k, r), for 1 <= r <= (n - k)/2.
1, 1, 1, 2, 2, 2, 4, 6, 6, 6, 10, 16, 22, 22, 22, 26, 48, 70, 92, 92, 92, 74, 144, 236, 328, 420, 420, 420, 218, 454, 782, 1202, 1622, 2042, 2042, 2042, 672, 1454, 2656, 4278, 6320, 8362, 10404, 10404, 10404, 2126, 4782, 9060, 15380, 23742, 34146, 44550, 54954, 54954, 54954
Offset: 2
Examples
Triangle begins n\k| 0 1 2 3 4 5 6 7 ---+--------------------------------------- 2 | 1 3 | 1 1 4 | 2 2 2 5 | 4 6 6 6 6 | 10 16 22 22 22 7 | 26 48 70 92 92 92 8 | 74 144 236 328 420 420 420 9 | 218 454 782 1202 1622 2042 2042 2042 ...
References
- O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005
Links
- O. Gascuel, M. Hendy, A. Jean-Marie and R. McLachlan, (2003) The combinatorics of tandem duplication trees, Systematic Biology 52, 110-118.
- J. Yang and L. Zhang, On Counting Tandem Duplication Trees, Molecular Biology and Evolution, Volume 21, Issue 6, (2004) 1160-1163.
Programs
Formula
T(n,k) = Sum_{j = 0.. k+1} T(n-1,j) for n >= 3, 0 <= k <= n - 2, with T(2,0) = 1 and T(n,k) = 0 for k >= n - 1.
T(n,k) = T(n,k-1) + T(n-1,k+1) for n >= 3, 1 <= k <= n - 2.
Comments