cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264869 Triangular array: For n >= 2 and 0 <= k <= n - 2, T(n, k) equals the number of rooted duplication trees on n gene segments whose leftmost visible duplication event is (k, r), for 1 <= r <= (n - k)/2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 6, 6, 6, 10, 16, 22, 22, 22, 26, 48, 70, 92, 92, 92, 74, 144, 236, 328, 420, 420, 420, 218, 454, 782, 1202, 1622, 2042, 2042, 2042, 672, 1454, 2656, 4278, 6320, 8362, 10404, 10404, 10404, 2126, 4782, 9060, 15380, 23742, 34146, 44550, 54954, 54954, 54954
Offset: 2

Views

Author

Peter Bala, Nov 27 2015

Keywords

Comments

See Figure 3(a) in Gascuel et al. (2003).

Examples

			Triangle begins
  n\k|   0    1    2    3    4    5    6    7
  ---+---------------------------------------
   2 |   1
   3 |   1    1
   4 |   2    2    2
   5 |   4    6    6    6
   6 |  10   16   22   22   22
   7 |  26   48   70   92   92   92
   8 |  74  144  236  328  420  420  420
   9 | 218  454  782 1202 1622 2042 2042 2042
  ...
		

References

  • O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005

Crossrefs

Cf. A206464 (column 0), A264868 (row sums and main diagonal), A086521.

Programs

  • Maple
    A264869 := proc (n, k) option remember;
    `if`(n <= 2, 1, add(A264869(n - 1, j), j = 0 .. min(k + 1, n - 3))) end proc:
    seq(seq(A264869(n, k), k = 0..n - 2), n = 2..11);

Formula

T(n,k) = Sum_{j = 0.. k+1} T(n-1,j) for n >= 3, 0 <= k <= n - 2, with T(2,0) = 1 and T(n,k) = 0 for k >= n - 1.
T(n,k) = T(n,k-1) + T(n-1,k+1) for n >= 3, 1 <= k <= n - 2.