cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264889 Partial sums of hyperfactorials (A002109).

Original entry on oeis.org

1, 2, 6, 114, 27762, 86427762, 4031164827762, 3319770429936027762, 55696441261496986915227762, 21577941278638297470665013744027762, 215779412250996503370318565758665013744027762, 61564384586850833363801728392684283449726665013744027762
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Examples

			a(0) = 1;
a(1) = 1 + 1^1 = 2;
a(2) = 1 + 1^1 + 1^1*2^2 = 6;
a(3) = 1 + 1^1 + 1^1*2^2 + 1^1*2^2*3^3 = 114;
a(4) = 1 + 1^1 + 1^1*2^2 + 1^1*2^2*3^3 + 1^1*2^2*3^3*4^4 = 27762, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Hyperfactorial[k], {k, 0, n}], {n, 0, 11}]
    Accumulate[Hyperfactorial[Range[0,15]]] (* Harvey P. Dale, Sep 22 2021 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=2, k, j^j)); \\ Altug Alkan, Nov 27 2015

Formula

a(n) = Sum_{k = 0..n} A002109(k).
a(n) = Sum_{k = 0..n} (k!)^k/Barnes G-Function(k + 1).