A264909 Number A(n,k) of k-ascent sequences of length n with no consecutive repeated letters; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 6, 5, 0, 1, 1, 4, 12, 21, 16, 0, 1, 1, 5, 20, 54, 87, 61, 0, 1, 1, 6, 30, 110, 276, 413, 271, 0, 1, 1, 7, 42, 195, 670, 1574, 2213, 1372, 0, 1, 1, 8, 56, 315, 1380, 4470, 9916, 13205, 7795, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, 7, ... 0, 2, 6, 12, 20, 30, 42, 56, ... 0, 5, 21, 54, 110, 195, 315, 476, ... 0, 16, 87, 276, 670, 1380, 2541, 4312, ... 0, 61, 413, 1574, 4470, 10555, 21931, 41468, ... 0, 271, 2213, 9916, 32440, 86815, 201761, 422128, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv:1503.00914 [math.CO], 2015.
Crossrefs
Programs
-
Maple
b:= proc(n, k, i, t) option remember; `if`(n<1, 1, add( `if`(j=i, 0, b(n-1, k, j, t+`if`(j>i, 1, 0))), j=0..t+k)) end: A:= (n, k)-> b(n-1, k, 0$2): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[n_, k_, i_, t_] := b[n, k, i, t] = If[n<1, 1, Sum[If[j == i, 0, b[n-1, k, j, t + If[j>i, 1, 0]]], {j, 0, t+k}]]; A[n_, k_] := b[n-1, k, 0, 0]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)