cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A138265 Number of upper triangular zero-one matrices with n ones and no zero rows or columns.

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 61, 271, 1372, 7795, 49093, 339386, 2554596, 20794982, 182010945, 1704439030, 17003262470, 180011279335, 2015683264820, 23801055350435, 295563725628564, 3850618520827590, 52514066450469255, 748191494586458700, 11115833059268126770
Offset: 0

Views

Author

Vladeta Jovovic, Mar 10 2008, Mar 11 2008

Keywords

Comments

Row sums of A193357.
This is also the number of rigid unlabeled interval orders with n points (see Brightwell-Keller, Theorem 2; or Dukes-Kitaev-Remmel-Steingrímsson, Theorem 8). - N. J. A. Sloane, Dec 04 2011 [Corrected by Vít Jelínek, Sep 04 2014.]
Number of length-n ascent sequences without flat steps (i.e., no two adjacent digits are equal). An ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(k)>=0 and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) gives the number of ascents of its argument. [Joerg Arndt, Nov 05 2012]

Examples

			From _Joerg Arndt_, Nov 05 2012: (Start)
The a(4) = 5 such matrices with 4 ones are (dots for zeros):
  1 . . .      1 1 .      1 . 1      1 1 .      1 . .
  . 1 . .      . . 1      . 1 .      . 1 .      . 1 1
  . . 1 .      . . 1      . . 1      . . 1      . . 1
  . . . 1
The a(5)=16 ascent sequences without flat steps are (dots for zeros):
  [ 1]   [ . 1 . 1 . ]
  [ 2]   [ . 1 . 1 2 ]
  [ 3]   [ . 1 . 1 3 ]
  [ 4]   [ . 1 . 2 . ]
  [ 5]   [ . 1 . 2 1 ]
  [ 6]   [ . 1 . 2 3 ]
  [ 7]   [ . 1 2 . 1 ]
  [ 8]   [ . 1 2 . 2 ]
  [ 9]   [ . 1 2 . 3 ]
  [10]   [ . 1 2 1 . ]
  [11]   [ . 1 2 1 2 ]
  [12]   [ . 1 2 1 3 ]
  [13]   [ . 1 2 3 . ]
  [14]   [ . 1 2 3 1 ]
  [15]   [ . 1 2 3 2 ]
  [16]   [ . 1 2 3 4 ]
(End)
		

Crossrefs

Column k=0 of A242153.
Column k=1 of A264909.
Row sums of A137252.

Programs

  • Maple
    g:=sum(product(1-1/(1+x)^i,i=1..n),n=0..35): gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=0..22);  # Emeric Deutsch, Mar 23 2008
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
         `if`(i=j, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+1))
        end:
    a:= n-> b(n-1, 0$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 09 2012, Jan 14 2015
  • Mathematica
    max = 25; g = Sum[Product[1 - 1/(1 - x)^i, {i, 1, n}], {n, 0, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n] // Abs, {n, 0, max-1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
  • Sage
    # Adaptation of the Maple program by Alois P. Heinz:
    @CachedFunction
    def b(n, i, t):
        if n<1: return 1
        return sum(b(n-1, j, t+(j>i)) for j in range(t+2))
    def a(n):
        if n<1: return 1
        return sum((-1)^(n-k)*binomial(n-1, k-1)*b(k-1, 0, 0) for k in range(n+1))
    [a(n) for n in range(33)]
    # Joerg Arndt, Feb 26 2014

Formula

G.f.: Sum_{n>=0} (Product_{i=1..n} 1-1/(1+x)^i).
G.f.: Sum_{n>=0} (1+x)^(n+1)*Product_{i=1..n} (1-(1+x)^i)^2. Proved by Bringmann-Li-Rhoades, and by Andrews-Jelínek. - Vít Jelínek, Sep 04 2014
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)*A079144(k). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*A022493(k).
G.f.: B(x/(1+x)) where B(x) is the g.f. of A022493; g.f.: Q(0,u) where u=x/(1+x), Q(k,u) = 1 + (1 - (1-x)^(2*k+1))/(1 - (1-(1-x)^(2*k+2))/(1 -(1-x)^(2*k+2) + 1/Q(k+1,u) )); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
Asymptotics (Brightwell and Keller, 2011): a(n) ~ 12*sqrt(3)/(exp(Pi^2/12)*Pi^(5/2)) * n!*sqrt(n)*(6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014
From Vít Jelínek, Sep 04 2014: (Start)
For each m, a(5m+4) mod 5 = 0. Conjectured by Andrews-Sellers, and proved by Garvan (see Remark 1.4(ii) in Garvan's paper).
For each m, a(5m+1) mod 5 = a(5m+2) mod 5 = 3*a(5m+3) mod 5. Proved by Garvan (see (1.17) in Garvan's paper).
The limit a(n)/A022493(n) is equal to exp(-Pi^2/6). This corresponds to the asymptotic probability that a random unlabeled interval order is rigid (See Brightwell-Keller; or Jelínek, Fact 5.2). (End)
Conjectural g.f.: 1 + Sum_{n >= 0} n/(1+x)^(n+1) * (Product_{i = 1..n} 1 - 1/(1+x)^i). Cf. A194530. - Peter Bala, Aug 21 2023

Extensions

More terms from Emeric Deutsch, Mar 23 2008

A263852 Number of 2-ascent sequences of length n with no consecutive repeated letters.

Original entry on oeis.org

1, 1, 2, 6, 21, 87, 413, 2213, 13205, 86828, 623712, 4859307, 40810353, 367525528, 3532986232, 36107260781, 390938180027, 4470065574970, 53825174198772, 680796406765054, 9024180239004754, 125096535241364056, 1810074349321324370, 27289548352480937756
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2015

Keywords

Crossrefs

Column k=2 of A264909.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+2))
        end:
    a:= n-> b(n-1, 0$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 19 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Sum[If[j == i, 0, b[n-1, j, t + If[j>i, 1, 0]]], {j, 0, t+2}]]; a[n_] := b[n-1, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)

Extensions

a(10)-a(23) from Alois P. Heinz, Nov 19 2015

A263853 Number of 3-ascent sequences of length n with no consecutive repeated letters.

Original entry on oeis.org

1, 1, 3, 12, 54, 276, 1574, 9916, 68394, 512671, 4150148, 36086135, 335447341, 3319876281, 34853551700, 386889999296, 4527701024471, 55715658165361, 719205555167707, 9717733698168073, 137168409543673446, 2018981393006166050, 30936712227446490134
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2015

Keywords

Crossrefs

Column k=3 of A264909.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+3))
        end:
    a:= n-> (b(n-1, 0$2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 19 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 3}]]; a[n_] := b[n - 1, 0, 0]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)

Extensions

a(10)-a(22) from Alois P. Heinz, Nov 19 2015

A263854 Number of 4-ascent sequences of length n with no consecutive repeated letters.

Original entry on oeis.org

1, 1, 4, 20, 110, 670, 4470, 32440, 254490, 2146525, 19374399, 186356108, 1903188611, 20569046543, 234562076984, 2814847291152, 35461339995304, 467952904377739, 6455368497736153, 92919917495585794, 1393239845937756837, 21726457354762648604
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2015

Keywords

Crossrefs

Column k=4 of A264909.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+4))
        end:
    a:= n-> b(n-1, 0$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 19 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 4}]]; a[n_] := b[n - 1, 0, 0]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)

Extensions

a(10)-a(21) from Alois P. Heinz, Nov 19 2015

A264910 Number of 5-ascent sequences of length n with no consecutive repeated letters.

Original entry on oeis.org

1, 1, 5, 30, 195, 1380, 10555, 86815, 764350, 7174420, 71532369, 755136887, 8415519048, 98744576456, 1216948265335, 15718032335081, 212330461568282, 2994374695258034, 44008250794756373, 672986694107199687, 10692604102273015636, 176266660430175342285
Offset: 0

Views

Author

Alois P. Heinz, Nov 28 2015

Keywords

Crossrefs

Column k=5 of A264909.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+5))
        end:
    a:= n-> (b(n-1, 0$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Sum[If[j==i, 0, b[n-1, j, t + If[j>i, 1, 0]]], {j, 0, t+5}]];
    a[n_] := b[n-1, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 14 2017, translated from Maple *)

A264911 Number of 6-ascent sequences of length n with no consecutive repeated letters.

Original entry on oeis.org

1, 1, 6, 42, 315, 2541, 21931, 201761, 1971627, 20401115, 222886237, 2564378397, 30996823039, 392772620555, 5206946927601, 72084153595073, 1040323636265431, 15627180533214417, 243970019981427565, 3953119943277152705, 66394925299770846495, 1154518082416143179150
Offset: 0

Views

Author

Alois P. Heinz, Nov 28 2015

Keywords

Crossrefs

Column k=6 of A264909.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+6))
        end:
    a:= n-> (b(n-1, 0$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 6}]]; a[n_] := b[n - 1, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)

A264912 Number of 7-ascent sequences of length n with no consecutive repeated letters.

Original entry on oeis.org

1, 1, 7, 56, 476, 4312, 41468, 422128, 4536140, 51328018, 610168496, 7604171722, 99154078394, 1350325442746, 19173655721912, 283420080801700, 4354942891383206, 69465537443190352, 1148784383085885884, 19673049517219904032, 348483690687062619926
Offset: 0

Views

Author

Alois P. Heinz, Nov 28 2015

Keywords

Crossrefs

Column k=7 of A264909.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+7))
        end:
    a:= n-> (b(n-1, 0$2)):
    seq(a(n), n=0..30);

A264913 Number of 8-ascent sequences of length n with no consecutive repeated letters.

Original entry on oeis.org

1, 1, 8, 72, 684, 6876, 72924, 814056, 9544164, 117284766, 1507813722, 20243939784, 283383218358, 4129738188546, 62563457162916, 983985264479016, 16046556350152008, 271012423865891076, 4735104984115971090, 85496795448023574282, 1593757450233067980306
Offset: 0

Views

Author

Alois P. Heinz, Nov 28 2015

Keywords

Crossrefs

Column k=8 of A264909.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+8))
        end:
    a:= n-> (b(n-1, 0$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 8}]]; a[n_] := b[n - 1, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)

A264914 Number of 9-ascent sequences of length n with no consecutive repeated letters.

Original entry on oeis.org

1, 1, 9, 90, 945, 10440, 121065, 1470855, 18688680, 247924425, 3428559573, 49353455856, 738477897552, 11471175099726, 184755890053173, 3081830366508444, 53182355345412138, 948482464405185843, 17465164002387664056, 331740754587283644945, 6494261833979742949884
Offset: 0

Views

Author

Alois P. Heinz, Nov 28 2015

Keywords

Crossrefs

Column k=9 of A264909.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+9))
        end:
    a:= n-> (b(n-1, 0$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 9}]]; a[n_] := b[n - 1, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)

A264915 Number of 10-ascent sequences of length n with no consecutive repeated letters.

Original entry on oeis.org

1, 1, 10, 110, 1265, 15235, 191785, 2519605, 34494625, 491432590, 7276062838, 111816814439, 1781492191281, 29392907305322, 501677394880530, 8849027884862077, 161155012811798819, 3027460412190175918, 58617635130507630386, 1168800382939975874066
Offset: 0

Views

Author

Alois P. Heinz, Nov 28 2015

Keywords

Crossrefs

Column k=10 of A264909.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
          `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+10))
        end:
    a:= n-> (b(n-1, 0$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 10}]]; a[n_] :=  b[n - 1, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)
Showing 1-10 of 11 results. Next