cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A264939 Number of n X n arrays containing n copies of 0..n-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 2, 56, 184740, 137409486772, 36724170744914466520, 5395269899168064415277849230476
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Diagonal of A264945.

Examples

			Some solutions for n=4
..0..1..2..0....0..1..2..0....0..1..0..1....0..1..2..0....0..1..0..2
..3..2..0..3....0..2..3..1....2..1..3..0....3..2..1..2....2..1..2..3
..3..2..1..3....1..2..1..3....2..3..2..3....0..3..0..1....0..1..0..3
..0..1..2..1....2..3..0..3....2..3..0..1....3..1..3..2....2..3..1..3
		

Crossrefs

Cf. A264945.

A264946 Number of 3 X n arrays containing n copies of 0..3-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 8, 56, 332, 2350, 16108, 114148, 817280, 5918424, 43251920, 318428920, 2359455400, 17577965926, 131579085320, 989014916960, 7461197116280, 56471149527616, 428656384570808, 3262347081071272, 24887490475059512
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Row 3 of A264945.

Examples

			Some solutions for n=4:
  0 1 2 1    0 1 0 1    0 1 0 2    0 1 2 1    0 1 2 0
  1 0 2 0    0 2 1 2    1 0 2 1    2 0 2 1    0 2 1 2
  1 2 0 2    2 0 2 1    2 0 1 2    1 0 2 0    1 0 1 2
		

Crossrefs

Cf. A264945.

Formula

Conjectured recurrence of order 9 and degree 13: (n + 7)*(n + 9)*(n + 11)*(n + 12)*(1125*n^9 + 71100*n^8 + 1849290*n^7 + 25782456*n^6 + 208721101*n^5 + 972463852*n^4 + 2219593700*n^3 + 50298752*n^2 - 10311481536*n - 14857032960)*a(n + 9) - (n + 8)*(n + 11)*(1125*n^11 + 105975*n^10 + 4287165*n^9 + 97635351*n^8 + 1380358747*n^7 + 12566316081*n^6 + 73253605103*n^5 + 255547606333*n^4 + 398433897060*n^3 - 409020958588*n^2 - 2573789550288*n - 2893020641280)*a(n + 8) - (n + 7)*(55125*n^12 + 5043150*n^11 + 203593785*n^10 + 4783109874*n^9 + 72494563771*n^8 + 740695604282*n^7 + 5151899227595*n^6 + 23797245731102*n^5 + 66502991649164*n^4 + 73821686951912*n^3 - 148787634331808*n^2 - 594255830565888*n - 585045220193280)*a(n + 7) + (-111375*n^13 - 10629900*n^12 - 452242260*n^11 - 11349359364*n^10 - 187042020462*n^9 - 2127929201500*n^8 - 17043729555112*n^7 - 95651673757276*n^6 - 362118971182795*n^5 - 819923758737640*n^4 - 569404973885116*n^3 + 2298397321892016*n^2 + 6690359386550016*n + 5779315376271360)*a(n + 6) + 4*(68625*n^13 + 6350850*n^12 + 262268790*n^11 + 6397257006*n^10 + 102643250092*n^9 + 1138907266426*n^8 + 8907524302014*n^7 + 48769985579898*n^6 + 178866084976275*n^5 + 380439835948764*n^4 + 162302253918524*n^3 - 1409022793603840*n^2 - 3584273436805056*n - 2901502849512960)*a(n + 5) + 8*(113625*n^13 + 10109475*n^12 + 400010115*n^11 + 9340598391*n^10 + 143726469497*n^9 + 1536021852345*n^8 + 11649644036681*n^7 + 62442624371309*n^6 + 227373943553018*n^5 + 494618567601008*n^4 + 295071232164264*n^3 - 1523160592469296*n^2 - 4224581839405248*n - 3597712690682880)*a(n + 4) + 16*(10125*n^13 + 791775*n^12 + 27734085*n^11 + 599490219*n^10 + 9285055875*n^9 + 110260636645*n^8 + 1005826848007*n^7 + 6794028883657*n^6 + 32142152171668*n^5 + 97251455731576*n^4 + 145564079336272*n^3 - 68830984119216*n^2 - 616978454170176*n - 699609347458560)*a(n + 3) - 16*(102375*n^13 + 8429850*n^12 + 302519490*n^11 + 6252315786*n^10 + 82728789292*n^9 + 735119632054*n^8 + 4454619907050*n^7 + 18120079094814*n^6 + 45886145527965*n^5 + 51009713975544*n^4 - 78118093654492*n^3 - 396941915101552*n^2 - 632960801821824*n - 397766739363840)*a(n + 2) - 64*(n + 1)*(28125*n^11 + 2145375*n^10 + 69983925*n^9 + 1286257695*n^8 + 14737434403*n^7 + 109491713225*n^6 + 526473720215*n^5 + 1544097805013*n^4 + 2140227079172*n^3 - 1382380121116*n^2 - 9705594256208*n - 11040556116480)*n*a(n + 1) - 512*(n - 1)*(n + 1)*(1125*n^9 + 81225*n^8 + 2458590*n^7 + 40812786*n^6 + 406374277*n^5 + 2472650097*n^4 + 8781110488*n^3 + 15058677204*n^2 + 1549576672*n - 21689733120)*n^2*a(n) = 0. - Manuel Kauers and Christoph Koutschan, Mar 06 2023
Conjecture: a(n) ~ 3^(7/2) * 2^(3*n - 5) / (Pi*n), based on the recurrence by Manuel Kauers and Christoph Koutschan. - Vaclav Kotesovec, Mar 07 2023

A264947 Number of 4 X n arrays containing n copies of 0..4-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 60, 3201, 184740, 11375145, 730983420, 48402531561, 3282992503164, 226854309720993, 15915758107113276, 1130694005695927761, 81177583723495750340, 5880587303767912833417, 429300706847441007321756
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Row 4 of A264945.

Examples

			Some solutions for n=4:
  0 1 0 2   0 1 2 0   0 1 2 0   0 1 0 1   0 1 2 0
  2 0 3 1   3 0 1 2   0 3 1 3   0 2 3 1   3 1 0 3
  2 3 2 1   3 2 3 1   3 2 0 1   3 1 3 2   2 3 1 2
  1 3 0 3   1 2 3 0   2 1 2 3   2 0 2 3   3 1 0 2
		

Crossrefs

Cf. A264945.

Programs

  • Mathematica
    cols = Tuples[{0, 1, 2, 3}, 4];
    tmat = Table[If[Or @@ MapThread[SameQ, cols[[{i, j}]]], 0, 1], {i, 256}, {j, 256}];
    vec = vvec = ((x^Count[#, 0] * y^Count[#, 1] * z^Count[#, 2]) & /@ cols);
    Prepend[Table[vec = Expand[vvec*(tmat.vec)]; Coefficient[Total[vec], (x*y*z)^n]/24, {n, 2, 10}], 1]

A264941 Number of nX3 arrays containing 3 copies of 0..n-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

0, 1, 56, 3201, 307016, 43200625, 8403205056, 2162875665601, 712215325718576, 292162814336854881, 146127700393451369000
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Column 3 of A264945.

Examples

			Some solutions for n=4
..0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2
..3..0..2....3..0..2....3..2..0....3..0..1....0..1..3....3..1..3....1..2..3
..3..1..3....3..1..3....0..1..3....2..3..0....1..2..3....2..3..0....2..1..3
..1..0..2....0..2..1....1..3..2....1..3..2....2..3..0....2..1..0....0..3..0
		

Crossrefs

Cf. A264945.

A264942 Number of nX4 arrays of permutations of 4 copies of 0..n-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

0, 2, 332, 184740, 196389904, 368696849320, 1122409297218768, 5194172319787113488, 34756519036284839519360
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Column 4 of A264945.

Examples

			Some solutions for n=4
..0..1..2..0....0..1..2..0....0..1..2..0....0..1..0..2....0..1..0..2
..1..2..3..2....1..2..0..3....1..3..0..2....1..2..3..0....1..3..1..0
..0..1..3..2....3..1..2..3....3..1..3..2....1..2..3..0....3..0..2..1
..3..1..3..0....2..0..3..1....1..3..2..0....3..1..3..2....3..2..3..2
		

Crossrefs

Cf. A264945.

A264943 Number of nX5 arrays of permutations of 5 copies of 0..n-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

0, 1, 2350, 11375145, 137409486772, 3537141103745065, 173357342638694530002, 14844736259829478729001905
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Column 5 of A264945.

Examples

			Some solutions for n=3
..0..1..2..0..1....0..1..2..1..2....0..1..2..1..2....0..1..0..2..1
..0..2..0..1..2....1..2..1..0..2....2..0..2..0..1....1..2..0..1..0
..1..2..1..0..2....0..2..0..1..0....1..0..2..0..1....2..0..2..1..2
		

Crossrefs

Cf. A264945.

A264944 Number of nX6 arrays of permutations of 6 copies of 0..n-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

0, 2, 16108, 730983420, 102117302729744, 36724170744914466520, 29526013062983124375791088
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Column 6 of A264945.

Examples

			Some solutions for n=3
..0..1..0..2..0..2....0..1..2..0..2..1....0..1..0..1..0..2....0..1..2..1..0..2
..0..1..0..1..2..1....1..0..1..2..1..0....2..0..2..0..1..2....0..1..0..2..0..1
..2..1..2..1..2..0....2..0..2..1..2..0....1..2..0..1..2..1....2..0..2..1..2..1
		

Crossrefs

Cf. A264945.

A264948 Number of 5Xn arrays containing n copies of 0..5-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 544, 307016, 196389904, 137409486772, 102117302729744, 79300380540248536, 63677294433618454384
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Row 5 of A264945.

Examples

			Some solutions for n=2
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..2..3....2..3....2..3....2..3....2..3....0..2....2..3....2..3....2..3....2..3
..4..2....4..0....0..4....0..4....2..0....1..3....0..4....0..1....1..0....4..3
..1..3....1..2....2..3....2..1....4..3....2..4....1..4....2..4....3..4....0..4
..0..4....4..3....4..1....3..4....1..4....4..3....3..2....3..4....4..2....2..1
		

Crossrefs

Cf. A264945.

A264949 Number of 6Xn arrays containing n copies of 0..6-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 6040, 43200625, 368696849320, 3537141103745065, 36724170744914466520
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Row 6 of A264945.

Examples

			Some solutions for n=2
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..2..3....2..3....2..0....1..0....2..3....2..0....2..3....2..3....2..3....2..1
..3..4....4..5....3..4....2..3....4..1....2..3....4..2....2..0....0..4....3..2
..1..5....4..0....4..5....2..4....5..3....4..1....4..3....4..1....5..2....0..3
..5..0....5..1....5..1....4..5....0..4....5..3....5..0....5..3....3..5....4..5
..2..4....2..3....2..3....3..5....5..2....5..4....1..5....5..4....1..4....5..4
		

Crossrefs

Cf. A264945.

A264950 Number of 7Xn arrays containing n copies of 0..7-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 79008, 8403205056, 1122409297218768, 173357342638694530002, 29526013062983124375791088, 5395269899168064415277849230476
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Row 7 of A264945.

Examples

			Some solutions for n=2
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..2..0....2..3....1..2....2..3....0..1....2..3....2..3....2..3....2..3....2..3
..3..4....4..2....3..4....4..0....2..3....1..3....4..5....4..5....2..0....4..3
..5..6....5..0....5..0....5..4....4..5....4..0....3..4....4..5....4..5....5..1
..3..2....6..5....6..3....2..5....6..2....5..4....6..2....1..6....3..1....2..6
..6..1....6..4....5..2....6..1....5..6....6..5....5..0....2..0....6..4....5..4
..5..4....3..1....4..6....6..3....3..4....6..2....6..1....3..6....5..6....6..0
		

Crossrefs

Cf. A264945.
Showing 1-10 of 10 results.