cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264946 Number of 3 X n arrays containing n copies of 0..3-1 with no equal horizontal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 8, 56, 332, 2350, 16108, 114148, 817280, 5918424, 43251920, 318428920, 2359455400, 17577965926, 131579085320, 989014916960, 7461197116280, 56471149527616, 428656384570808, 3262347081071272, 24887490475059512
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2015

Keywords

Comments

Row 3 of A264945.

Examples

			Some solutions for n=4:
  0 1 2 1    0 1 0 1    0 1 0 2    0 1 2 1    0 1 2 0
  1 0 2 0    0 2 1 2    1 0 2 1    2 0 2 1    0 2 1 2
  1 2 0 2    2 0 2 1    2 0 1 2    1 0 2 0    1 0 1 2
		

Crossrefs

Cf. A264945.

Formula

Conjectured recurrence of order 9 and degree 13: (n + 7)*(n + 9)*(n + 11)*(n + 12)*(1125*n^9 + 71100*n^8 + 1849290*n^7 + 25782456*n^6 + 208721101*n^5 + 972463852*n^4 + 2219593700*n^3 + 50298752*n^2 - 10311481536*n - 14857032960)*a(n + 9) - (n + 8)*(n + 11)*(1125*n^11 + 105975*n^10 + 4287165*n^9 + 97635351*n^8 + 1380358747*n^7 + 12566316081*n^6 + 73253605103*n^5 + 255547606333*n^4 + 398433897060*n^3 - 409020958588*n^2 - 2573789550288*n - 2893020641280)*a(n + 8) - (n + 7)*(55125*n^12 + 5043150*n^11 + 203593785*n^10 + 4783109874*n^9 + 72494563771*n^8 + 740695604282*n^7 + 5151899227595*n^6 + 23797245731102*n^5 + 66502991649164*n^4 + 73821686951912*n^3 - 148787634331808*n^2 - 594255830565888*n - 585045220193280)*a(n + 7) + (-111375*n^13 - 10629900*n^12 - 452242260*n^11 - 11349359364*n^10 - 187042020462*n^9 - 2127929201500*n^8 - 17043729555112*n^7 - 95651673757276*n^6 - 362118971182795*n^5 - 819923758737640*n^4 - 569404973885116*n^3 + 2298397321892016*n^2 + 6690359386550016*n + 5779315376271360)*a(n + 6) + 4*(68625*n^13 + 6350850*n^12 + 262268790*n^11 + 6397257006*n^10 + 102643250092*n^9 + 1138907266426*n^8 + 8907524302014*n^7 + 48769985579898*n^6 + 178866084976275*n^5 + 380439835948764*n^4 + 162302253918524*n^3 - 1409022793603840*n^2 - 3584273436805056*n - 2901502849512960)*a(n + 5) + 8*(113625*n^13 + 10109475*n^12 + 400010115*n^11 + 9340598391*n^10 + 143726469497*n^9 + 1536021852345*n^8 + 11649644036681*n^7 + 62442624371309*n^6 + 227373943553018*n^5 + 494618567601008*n^4 + 295071232164264*n^3 - 1523160592469296*n^2 - 4224581839405248*n - 3597712690682880)*a(n + 4) + 16*(10125*n^13 + 791775*n^12 + 27734085*n^11 + 599490219*n^10 + 9285055875*n^9 + 110260636645*n^8 + 1005826848007*n^7 + 6794028883657*n^6 + 32142152171668*n^5 + 97251455731576*n^4 + 145564079336272*n^3 - 68830984119216*n^2 - 616978454170176*n - 699609347458560)*a(n + 3) - 16*(102375*n^13 + 8429850*n^12 + 302519490*n^11 + 6252315786*n^10 + 82728789292*n^9 + 735119632054*n^8 + 4454619907050*n^7 + 18120079094814*n^6 + 45886145527965*n^5 + 51009713975544*n^4 - 78118093654492*n^3 - 396941915101552*n^2 - 632960801821824*n - 397766739363840)*a(n + 2) - 64*(n + 1)*(28125*n^11 + 2145375*n^10 + 69983925*n^9 + 1286257695*n^8 + 14737434403*n^7 + 109491713225*n^6 + 526473720215*n^5 + 1544097805013*n^4 + 2140227079172*n^3 - 1382380121116*n^2 - 9705594256208*n - 11040556116480)*n*a(n + 1) - 512*(n - 1)*(n + 1)*(1125*n^9 + 81225*n^8 + 2458590*n^7 + 40812786*n^6 + 406374277*n^5 + 2472650097*n^4 + 8781110488*n^3 + 15058677204*n^2 + 1549576672*n - 21689733120)*n^2*a(n) = 0. - Manuel Kauers and Christoph Koutschan, Mar 06 2023
Conjecture: a(n) ~ 3^(7/2) * 2^(3*n - 5) / (Pi*n), based on the recurrence by Manuel Kauers and Christoph Koutschan. - Vaclav Kotesovec, Mar 07 2023