A264986 Even bisection of A263272; terms of A264974 doubled.
0, 2, 4, 6, 8, 10, 12, 14, 32, 18, 20, 38, 24, 26, 28, 30, 16, 34, 36, 22, 40, 42, 68, 86, 96, 50, 104, 54, 56, 110, 60, 74, 92, 114, 44, 98, 72, 62, 116, 78, 80, 82, 84, 46, 100, 90, 64, 118, 48, 70, 88, 102, 52, 106, 108, 58, 112, 66, 76, 94, 120, 122, 284, 126, 176, 338, 204, 230, 248, 258, 140, 302, 288
Offset: 0
Keywords
Programs
-
Python
from sympy import factorint from sympy.ntheory.factor_ import digits from operator import mul def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3) def a038502(n): f=factorint(n) return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f]) def a038500(n): return n/a038502(n) def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n) def a(n): return a263273(4*n)/2 # Indranil Ghosh, May 23 2017
-
Scheme
(define (A264986 n) (A263272 (+ n n)))