A265017 Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into distinct parts with smallest part k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 0, 2, 0, 3, 0, 3, 0, 5, 0, 0, 4, 0, 7, 8, 0, 0, 5, 0, 25, 12, 0, 0, 0, 6, 0, 36, 16, 15, 0, 0, 0, 7, 0, 81, 20, 21, 0, 0, 0, 0, 8, 0, 107, 74, 27, 24, 0, 0, 0, 0, 9, 0, 316, 102, 33, 32, 0, 0, 0, 0, 0, 10, 0, 427, 222, 39, 40, 35, 0, 0, 0, 0, 0, 11
Offset: 0
Examples
Triangle T(n,k) begins: 00 : 1; 01 : 0, 1; 02 : 0, 0, 2; 03 : 0, 3, 0, 3; 04 : 0, 5, 0, 0, 4; 05 : 0, 7, 8, 0, 0, 5; 06 : 0, 25, 12, 0, 0, 0, 6; 07 : 0, 36, 16, 15, 0, 0, 0, 7; 08 : 0, 81, 20, 21, 0, 0, 0, 0, 8; 09 : 0, 107, 74, 27, 24, 0, 0, 0, 0, 9; 10 : 0, 316, 102, 33, 32, 0, 0, 0, 0, 0, 10; 11 : 0, 427, 222, 39, 40, 35, 0, 0, 0, 0, 0, 11; 12 : 0, 869, 286, 153, 48, 45, 0, 0, 0, 0, 0, 0, 12;
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- Richard P. Stanley, Parking Functions, 2011.
Crossrefs
Programs
-
Maple
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j) -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): g:= (n, i, l)-> `if`(i*(i+1)/2
n, 0, g(n-i, i-1, [i, l[]])))): T:= n-> (f-> seq(coeff(f, x, i), i=0..n))(g(n$2, [])): seq(T(n), n=0..16); -
Mathematica
p[l_] := With[{n = Length[l]}, n!*Det[Table[Function[t, If[t < 0, 0, l[[i]]^t/t!]][j - i + 1], {i, n}, {j, n}]]]; g[n_, i_, l_] := If[i(i+1)/2 < n, 0, If[n == 0, p[l]*x^ If[l == {}, 0, l[[1]]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Prepend[l, i]]]]]; T[n_] := If[n == 0, {1}, CoefficientList[g[n, n, {}], x]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Aug 20 2021, after Alois P. Heinz *)