cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A265016 Total sum of number of lambda-parking functions, where lambda ranges over all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 2, 6, 9, 20, 43, 74, 130, 241, 493, 774, 1413, 2286, 3987, 7287, 11650, 19235, 31581, 50852, 80867, 141615, 214538, 349179, 541603, 859759, 1303221, 2054700, 3277493, 4960397, 7652897, 11662457, 17703655, 26603187, 40043433, 59384901, 92234897, 134538472
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2015

Keywords

Examples

			The number of lambda-parking functions induced by the partitions of 4 into distinct parts:
5 by [1,3]: [1,1], [1,2], [2,1], [1,3], [3,1],
4 by [4]: [1], [2], [3], [4].
a(4) = 5 + 4 = 9.
		

Crossrefs

Programs

  • Maple
    p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)
             -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):
    g:= (n, i, l)->  `if`(i*(i+1)/2n, 0, g(n-i, i-1, [i, l[]])))):
    a:= n-> g(n$2, []):
    seq(a(n), n=0..35);
  • Mathematica
    p[l_] := With[{n = Length[l]}, n!*Det[Table[Function[t,
         If[t < 0, 0, l[[i]]^t/t!]][j - i + 1], {i, n}, {j, n}]]];
    g[n_, i_, l_] := If[i (i + 1)/2 < n, 0, If[n == 0, p[l],
         g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Prepend[l, i]]]]];
    a[n_] := If[n == 0, 1, g[n, n, {}]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Aug 20 2021, after Alois P. Heinz *)
Showing 1-1 of 1 results.