A265018 Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into distinct parts with largest part k; triangle T(n,k), n>=0, floor(sqrt(2n)+1/2)<=k<=n, read by rows.
1, 1, 2, 3, 3, 5, 4, 8, 7, 5, 16, 12, 9, 6, 40, 16, 11, 7, 34, 55, 20, 13, 8, 50, 73, 70, 24, 15, 9, 125, 132, 96, 85, 28, 17, 10, 281, 212, 119, 100, 32, 19, 11, 351, 469, 267, 142, 115, 36, 21, 12, 307, 642, 644, 322, 165, 130, 40, 23, 13
Offset: 0
Examples
Triangle T(n,k) begins: 00 : 1; 01 : 1; 02 : 2; 03 : 3, 3; 04 : 5, 4; 05 : 8, 7, 5; 06 : 16, 12, 9, 6; 07 : 40, 16, 11, 7; 08 : 34, 55, 20, 13, 8; 09 : 50, 73, 70, 24, 15, 9; 10 : 125, 132, 96, 85, 28, 17, 10; 11 : 281, 212, 119, 100, 32, 19, 11; 12 : 351, 469, 267, 142, 115, 36, 21, 12;
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- R. Stanley, Parking Functions, 2011
Crossrefs
Programs
-
Maple
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j) -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): g:= (n, i, l)-> `if`(i*(i+1)/2
n, 0, g(n-i, i-1, [i, l[]])))): T:= n->(f->seq(coeff(f, x, i), i=ldegree(f)..degree(f)))(g(n$2, [])): seq(T(n), n=0..20);
Comments