A265020 Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
1, 0, 1, 0, 2, 0, 3, 3, 0, 4, 5, 0, 5, 15, 0, 6, 21, 16, 0, 7, 42, 25, 0, 8, 54, 68, 0, 9, 90, 142, 0, 10, 110, 248, 125, 0, 11, 165, 409, 189, 0, 12, 195, 710, 496, 0, 13, 273, 1033, 967, 0, 14, 315, 1562, 2096, 0, 15, 420, 2291, 3265, 1296, 0, 16, 476, 3180
Offset: 0
Examples
T(5,2) = 15 because there are two partitions of 5 into 2 distinct parts: [2,3] and [1,4]. And [2,3] has 8 lambda-parking functions: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2] and [1,4] has 7: [1,1], [1,2], [1,3], [1,4], [2,1], [3,1], [4,1]. So [1,1], [1,2], [1,3], [2,1], [3,1] are counted twice. Triangle T(n,k) begins: 00 : 1; 01 : 0, 1; 02 : 0, 2; 03 : 0, 3, 3; 04 : 0, 4, 5; 05 : 0, 5, 15; 06 : 0, 6, 21, 16; 07 : 0, 7, 42, 25; 08 : 0, 8, 54, 68; 09 : 0, 9, 90, 142; 10 : 0, 10, 110, 248, 125; 11 : 0, 11, 165, 409, 189; 12 : 0, 12, 195, 710, 496; 13 : 0, 13, 273, 1033, 967; 14 : 0, 14, 315, 1562, 2096; 15 : 0, 15, 420, 2291, 3265, 1296; 16 : 0, 16, 476, 3180, 6057, 1921;
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- R. Stanley, Parking Functions, 2011
Crossrefs
Programs
-
Maple
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j) -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): g:= (n, i, l)-> `if`(i*(i+1)/2
n, 0, g(n-i, i-1, [i, l[]])))): T:= n-> (f-> seq(coeff(f, x, i), i=0..degree(f)))(g(n$2, [])): seq(T(n), n=0..20); -
Mathematica
p[l_] := With[{n = Length[l]}, n!*Det[Table[With[{t = j - i + 1}, l[[i]]^t/t!], {i, 1, n}, {j, 1, n}]]]; g[n_, i_, l_] := If[i*(i + 1)/2 < n, 0, If[n == 0, p[l]*x^Length[l], g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Join[{i}, l]]]]]; T[n_] := If[n == 0, {1}, CoefficientList[g[n, n, {}], x]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jul 29 2024, after Alois P. Heinz *)
Comments