cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265020 Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 3, 0, 4, 5, 0, 5, 15, 0, 6, 21, 16, 0, 7, 42, 25, 0, 8, 54, 68, 0, 9, 90, 142, 0, 10, 110, 248, 125, 0, 11, 165, 409, 189, 0, 12, 195, 710, 496, 0, 13, 273, 1033, 967, 0, 14, 315, 1562, 2096, 0, 15, 420, 2291, 3265, 1296, 0, 16, 476, 3180
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2015

Keywords

Comments

Differs from A265208 first at T(5,2). See example.

Examples

			T(5,2) = 15 because there are two partitions of 5 into 2 distinct parts: [2,3] and [1,4]. And [2,3] has 8 lambda-parking functions: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2] and [1,4] has 7: [1,1], [1,2], [1,3], [1,4], [2,1], [3,1], [4,1]. So [1,1], [1,2], [1,3], [2,1], [3,1] are counted twice.
Triangle T(n,k) begins:
00 :  1;
01 :  0,  1;
02 :  0,  2;
03 :  0,  3,   3;
04 :  0,  4,   5;
05 :  0,  5,  15;
06 :  0,  6,  21,   16;
07 :  0,  7,  42,   25;
08 :  0,  8,  54,   68;
09 :  0,  9,  90,  142;
10 :  0, 10, 110,  248,  125;
11 :  0, 11, 165,  409,  189;
12 :  0, 12, 195,  710,  496;
13 :  0, 13, 273, 1033,  967;
14 :  0, 14, 315, 1562, 2096;
15 :  0, 15, 420, 2291, 3265, 1296;
16 :  0, 16, 476, 3180, 6057, 1921;
		

Crossrefs

Row sums give A265016.
Columns k=0-1 give: A000007, A000027.

Programs

  • Maple
    p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)
             -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):
    g:= (n, i, l)->  `if`(i*(i+1)/2n, 0, g(n-i, i-1, [i, l[]])))):
    T:= n-> (f-> seq(coeff(f, x, i), i=0..degree(f)))(g(n$2, [])):
    seq(T(n), n=0..20);
  • Mathematica
    p[l_] := With[{n = Length[l]}, n!*Det[Table[With[{t = j - i + 1}, l[[i]]^t/t!], {i, 1, n}, {j, 1, n}]]];
    g[n_, i_, l_] := If[i*(i + 1)/2 < n, 0, If[n == 0, p[l]*x^Length[l], g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Join[{i}, l]]]]];
    T[n_] := If[n == 0, {1}, CoefficientList[g[n, n, {}], x]];
    Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jul 29 2024, after Alois P. Heinz *)

Formula

T(A000217(n),n) = A000272(n+1).