cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265021 Sum of fifth powers of the first n even numbers.

Original entry on oeis.org

0, 32, 1056, 8832, 41600, 141600, 390432, 928256, 1976832, 3866400, 7066400, 12220032, 20182656, 32064032, 49274400, 73574400, 107128832, 152564256, 213030432, 292265600, 394665600, 525356832, 690273056, 896236032, 1151040000, 1463540000, 1843744032
Offset: 0

Views

Author

Assoul Abdelkarim, Nov 30 2015

Keywords

Examples

			a(4) =  2^5 + 4^5 + 6^5 + 8^5 = 41600.
		

Crossrefs

Cf. A000539, A002594 (the same for odd numbers).

Programs

  • Magma
    [(8/3)*n^2*(n+1)^2*(2*n^2+2*n-1): n in [0..30]]; // Vincenzo Librandi, Dec 01 2015
    
  • Mathematica
    Accumulate[Range[0, 60, 2]^5] (* Michael De Vlieger, Nov 30 2015 *)
    CoefficientList[Series[32 x (1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^7, {x, 0, 33}], x] (* Vincenzo Librandi, Dec 01 2015 *)
  • PARI
    vector(100, n, n--; (8/3)*n^2*(n+1)^2*(2*n^2+2*n-1)) \\ Altug Alkan, Dec 01 2015

Formula

a(n) = 32 * Sum_{i=0..n} i^5 = (8/3)*n^2*(n+1)^2*(2*n^2+2*n-1).
a(n) = 32 * A000539(n).
G.f.: 32*x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^7. - Vincenzo Librandi, Dec 01 2015
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Vincenzo Librandi, Dec 01 2015