cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Assoul Abdelkarim

Assoul Abdelkarim's wiki page.

Assoul Abdelkarim has authored 7 sequences.

A330151 Partial sums of 4th powers of the even numbers.

Original entry on oeis.org

0, 16, 272, 1568, 5664, 15664, 36400, 74816, 140352, 245328, 405328, 639584, 971360, 1428336, 2042992, 2852992, 3901568, 5237904, 6917520, 9002656, 11562656, 14674352, 18422448, 22899904, 28208320, 34458320, 41769936, 50272992, 60107488, 71423984, 84383984
Offset: 0

Author

Assoul Abdelkarim, Dec 03 2019

Keywords

Examples

			a(4) = 0^4 + 2^4 + 4^4 + 6^4 + 8^4 = 5664.
		

Crossrefs

Partial sums of A016744.

Programs

  • Mathematica
    a[n_] := (8/15)*n*(6*n^4 + 15*n^3 + 10*n^2 - 1); Array[a, 31, 0] (* Amiram Eldar, Dec 08 2019 *)
  • PARI
    a(n) = sum(i=0, n, 16*i^4); \\ Jinyuan Wang, Dec 07 2019
    
  • PARI
    concat(0, Vec(16*x*(1 + x)*(1 + 10*x + x^2) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Dec 08 2019
    
  • Python
    def A330151(n): return 8*n*(n**2*(n*(6*n + 15) + 10) - 1)//15 # Chai Wah Wu, Dec 07 2021

Formula

a(n) = Sum_{k=1..n} (2*k)^4 = (8/15)*n*(6*n^4 + 15*n^3 + 10*n^2 - 1).
a(n) = 16*A000538(n).
From Colin Barker, Dec 08 2019: (Start)
G.f.: 16*x*(1 + x)*(1 + 10*x + x^2) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
E.g.f.: (8/15)*exp(x)*x*(30 + 225*x + 250*x^2 + 75*x^3 + 6*x^4). - Stefano Spezia, Dec 08 2019
a(n+1) = 12*A002299(n) + A002492(n+1). - Yasser Arath Chavez Reyes, Mar 07 2024

Extensions

More terms from Jinyuan Wang, Dec 07 2019

A265021 Sum of fifth powers of the first n even numbers.

Original entry on oeis.org

0, 32, 1056, 8832, 41600, 141600, 390432, 928256, 1976832, 3866400, 7066400, 12220032, 20182656, 32064032, 49274400, 73574400, 107128832, 152564256, 213030432, 292265600, 394665600, 525356832, 690273056, 896236032, 1151040000, 1463540000, 1843744032
Offset: 0

Author

Assoul Abdelkarim, Nov 30 2015

Keywords

Examples

			a(4) =  2^5 + 4^5 + 6^5 + 8^5 = 41600.
		

Crossrefs

Cf. A000539, A002594 (the same for odd numbers).

Programs

  • Magma
    [(8/3)*n^2*(n+1)^2*(2*n^2+2*n-1): n in [0..30]]; // Vincenzo Librandi, Dec 01 2015
    
  • Mathematica
    Accumulate[Range[0, 60, 2]^5] (* Michael De Vlieger, Nov 30 2015 *)
    CoefficientList[Series[32 x (1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^7, {x, 0, 33}], x] (* Vincenzo Librandi, Dec 01 2015 *)
  • PARI
    vector(100, n, n--; (8/3)*n^2*(n+1)^2*(2*n^2+2*n-1)) \\ Altug Alkan, Dec 01 2015

Formula

a(n) = 32 * Sum_{i=0..n} i^5 = (8/3)*n^2*(n+1)^2*(2*n^2+2*n-1).
a(n) = 32 * A000539(n).
G.f.: 32*x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^7. - Vincenzo Librandi, Dec 01 2015
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Vincenzo Librandi, Dec 01 2015

A256669 a(n) = (n!)! - n! - n.

Original entry on oeis.org

0, -1, -2, 711, 620448401733239439359972
Offset: 0

Author

Assoul Abdelkarim, Apr 07 2015

Keywords

Comments

For n>0, a(n) is divisible by n. - Michel Marcus, Apr 08 2015

Examples

			For n=3, a(3) = (3!)!-3!-3 = 6!-6-3 = 720-9 = 711.
		

Crossrefs

Cf. A256509.

Programs

A256509 a(n) = (n!)! - n! - 1.

Original entry on oeis.org

-1, -1, -1, 713, 620448401733239439359975
Offset: 0

Author

Assoul Abdelkarim, Mar 31 2015

Keywords

Comments

Term a(5) has 199 decimal digits. - Michael De Vlieger, Mar 31 2015

Examples

			a(3) = (3!)! - 3! - 1 = 720 - 6 - 1 = 713.
		

Programs

A236369 4^n! - 3^n! + 2^n! - 1.

Original entry on oeis.org

2, 2, 10, 3430, 281192563951390, 1766847064778382532572997586311708103976882383055495099549785723721857950
Offset: 0

Author

Assoul Abdelkarim, Jan 23 2014

Keywords

Comments

The next term has 434 digits. - Harvey P. Dale, Nov 04 2017

Examples

			For n=2, a(2)=4^2!-3^2!+2^2!-1=16-9+4-1=10.
		

Crossrefs

Programs

Formula

a(n)=4^n!-3^n!+2^n!-1.

Extensions

a(4)-a(5) from Charles R Greathouse IV, Jan 23 2014

A236368 a(n) = 4^(n!) - 3^(n!).

Original entry on oeis.org

1, 1, 7, 3367, 281192547174175, 1766847064778382532572997586311708102647654387270579226645978663441513375
Offset: 0

Author

Assoul Abdelkarim, Jan 23 2014

Keywords

Comments

a(6) has 434 digits.

Examples

			a(3) = 4^(3!) - 3^(3!) = 4^6 - 3^6 = 3367.
		

Crossrefs

Programs

Formula

a(n) = 4^(n!) - 3^(n!) = A101407(n) - A100731(n).

A203925 3^n! - 2^n!.

Original entry on oeis.org

1, 1, 5, 665, 282412759265, 1797010299914431210411850601513820123858571820477570761825
Offset: 0

Author

Assoul Abdelkarim, Jan 08 2012

Keywords

Formula

a(n) = A100731(n) - A050923(n). - Michel Marcus, Sep 04 2013