cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265038 Partial sums of A009927.

Original entry on oeis.org

1, 13, 63, 183, 401, 745, 1291, 2019, 2921, 4133, 5659, 7443, 9597, 12149, 15103, 18535, 22389, 26729, 31727, 37231, 43233, 50001, 57443, 65467, 74281, 83853, 94187, 105419, 117397, 130221, 144159, 158927, 174517, 191329, 209175, 227927, 247889, 268969, 291171, 314691
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 2015

Keywords

Comments

Needs a b-file (not based on any conjectures, of course). - N. J. A. Sloane, Dec 18 2015

Crossrefs

Cf. A009927.

Formula

Empirical: Sum_{k=0..n} [(1903/72) + (3/8)*(-1)^k +19*KroneckerDelta[k,0] - 8*KroneckerDelta[k,1] - 12*KroneckerDelta[k,2] + ((k+1)/12)*(187*k-273) - (32*sqrt(3)/27)*((13/2)*cos((4k+1)*Pi/6) + sin(2k*Pi/3)) - (3*sqrt(26)/2)*(-1)^n*cos(k*Pi/2 + arctan(1/5)) - (3/4)*i^k*(1+(-1)^k)*(k+2)].- G. C. Greubel, Dec 18 2015
Empirical g.f.: (1 +12*x +51*x^2 +130*x^3 +243*x^4 +350*x^5 +450*x^6 +418*x^7 +327*x^8 +182*x^9 +51*x^10 +16*x^11 -7*x^12 +8*x^13 +12*x^14) / ((1 -x)^4*(1 +x)*(1 +x^2)^2*(1 +x +x^2)^2). - Colin Barker, Dec 19 2015