A265045 Coordination sequence for a 6.6.6 point in the 3-transitive tiling {4.6.6, 6.6.6, 6.6.6.6} of the plane by squares and dominoes (hexagons).
1, 3, 7, 11, 14, 18, 23, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, A portion of the 3-transitive tiling {4.6.6, 6.6.6, 6.6.6.6}
- N. J. A. Sloane, A portion of the 3-transitive tiling {4.6.6, 6.6.6, 6.6.6.6} showing the three types of point
- N. J. A. Sloane, Hand-drawn illustration showing a(0) to a(10)
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
LinearRecurrence[{2,-1},{1,3,7,11,14,18,23,28,32},60] (* Harvey P. Dale, Sep 23 2017 *)
-
PARI
Vec((1+x)*(1+2*x^2-2*x^3+x^4+x^6-x^7)/(1-x)^2 + O(x^100)) \\ Colin Barker, Jan 01 2016
Formula
For n >= 7 all three sequences equal 4n. (For n >= 7 the n-th shell contains n-1 points in the interior of each quadrant plus 4 points on the axes.)
From Colin Barker, Jan 01 2016: (Start)
a(n) = 2*a(n-1)-a(n-2) for n>8.
a(n) = 4*n for n>6.
G.f.: (1+x)*(1+2*x^2-2*x^3+x^4+x^6-x^7) / (1-x)^2.
(End)
Comments