A265058 Coordination sequence for (2,3,8) tiling of hyperbolic plane.
1, 3, 5, 7, 9, 12, 16, 21, 27, 33, 40, 49, 61, 76, 94, 116, 142, 174, 214, 264, 326, 401, 493, 606, 745, 917, 1129, 1390, 1710, 2103, 2587, 3183, 3917, 4820, 5931, 7297, 8977, 11045, 13590, 16722, 20575, 25315, 31147, 38322, 47151, 58015, 71382, 87828, 108062, 132958, 163590, 201280, 247654
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 1, 0, 1, 0, 1, 0, 0, -1).
Crossrefs
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Programs
-
Mathematica
CoefficientList[Series[(x + 1)^2 (x^2 + x + 1) (x^6 + x^4 + x^2 + 1)/(x^10 - x^7 - x^5 - x^3 + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
-
PARI
x='x+O('x^50); Vec((x+1)^2*(x^2+x+1)*(x^6+x^4+x^2+1)/(x^10-x^7-x^5-x^3+1)) \\ G. C. Greubel, Aug 06 2017
Formula
G.f.: (x+1)^2*(x^2+x+1)*(x^6+x^4+x^2+1)/(x^10-x^7-x^5-x^3+1).