A265063 Coordination sequence for (2,4,8) tiling of hyperbolic plane.
1, 3, 5, 8, 12, 17, 25, 37, 53, 75, 107, 152, 216, 309, 441, 628, 895, 1275, 1816, 2588, 3689, 5257, 7491, 10675, 15211, 21675, 30888, 44016, 62723, 89381, 127368, 181499, 258637, 368560, 525200, 748413, 1066493, 1519757, 2165661, 3086079, 4397679, 6266716, 8930104, 12725445, 18133825, 25840796, 36823271, 52473355
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, -1, 1, 0, 1, -1).
Crossrefs
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Programs
-
Mathematica
CoefficientList[Series[(x^2 + 1)*(x^4 + 1)*(x + 1)^2/(x^8 - x^7 - x^5 + x^4 - x^3 - x + 1), {x, 0, 50}], x] (* G. C. Greubel, Aug 07 2017 *) LinearRecurrence[{1,0,1,-1,1,0,1,-1},{1,3,5,8,12,17,25,37,53},50] (* Harvey P. Dale, Jul 26 2024 *)
-
PARI
Vec((x^2+1)*(x^4+1)*(x+1)^2/(x^8-x^7-x^5+x^4-x^3-x+1) + O(x^100)) \\ Altug Alkan, Dec 29 2015
Formula
G.f.: (x^2+1)*(x^4+1)*(x+1)^2/(x^8-x^7-x^5+x^4-x^3-x+1).