A265067 Coordination sequence for (2,5,8) tiling of hyperbolic plane.
1, 3, 5, 8, 13, 20, 30, 46, 70, 105, 158, 238, 358, 539, 813, 1225, 1844, 2777, 4183, 6300, 9488, 14291, 21525, 32419, 48827, 73540, 110761, 166821, 251256, 378426, 569960, 858437, 1292923, 1947317, 2932923, 4417381, 6653176, 10020585, 15092360, 22731142, 34236184, 51564338, 77662890, 116970850, 176173970, 265341902
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, -1).
Crossrefs
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Programs
-
Mathematica
CoefficientList[Series[(x + 1)^2 (x^4 + x^3 + x^2 + x + 1) (x^6 + x^4 + x^2 + 1) / (x^12 - x^9 - x^8 - 2 x^7 - x^6 - 2 x^5 - x^4 - x^3 + 1), {x, 0, 45}], x] (* Vincenzo Librandi, Jan 20 2016 *)
-
PARI
Vec((x+1)^2*(x^4+x^3+x^2+x+1)*(x^6+x^4+x^2+1)/(x^12-x^9-x^8-2*x^7-x^6-2*x^5-x^4-x^3+1) + O(x^50)) \\ Michel Marcus, Jan 20 2016
Formula
G.f.: (x+1)^2*(x^4+x^3+x^2+x+1)*(x^6+x^4+x^2+1)/(x^12-x^9-x^8-2*x^7-x^6-2*x^5-x^4-x^3+1).