A265077 Coordination sequence for (3,6,8) tiling of hyperbolic plane.
1, 3, 6, 11, 20, 37, 66, 117, 208, 371, 662, 1179, 2100, 3741, 6666, 11877, 21160, 37699, 67166, 119667, 213204, 379853, 676762, 1205749, 2148216, 3827355, 6818982, 12148995, 21645180, 38563997, 68707298, 122411917, 218094408, 388566507, 692287030, 1233408755, 2197494812, 3915152565, 6975406506, 12427688349
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,1,1,-1).
Crossrefs
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Programs
-
Magma
I:=[1,3,6,11,20,37,66]; [n le 7 select I[n] else Self(n-1)+Self(n-2)+Self(n-4) + Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
-
Mathematica
CoefficientList[Series[(x^5 + x^4 + x^3 + x^2 + x + 1) (x + 1)/(x^6 - x^5 - x^4 - x^2 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
-
PARI
Vec((x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^6-x^5-x^4-x^2-x+1) + O(x^50)) \\ Michel Marcus, Dec 30 2015
Formula
G.f.: (x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^6-x^5-x^4-x^2-x+1).
a(n) = a(n-1)+a(n-2)+a(n-4)+a(n-5)-a(n-6) for n>6. - Vincenzo Librandi, Dec 30 2015