A265111 A rearrangement of the terms of A027746 (seen as flat list) such that adjacent terms are distinct.
1, 2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 3, 2, 11, 2, 3, 2, 13, 2, 7, 2, 5, 3, 2, 17, 2, 3, 2, 19, 3, 2, 5, 2, 7, 3, 2, 11, 2, 23, 2, 3, 2, 5, 2, 13, 5, 2, 3, 2, 7, 3, 2, 29, 3, 2, 5, 3, 2, 31, 2, 11, 3, 2, 17, 2, 7, 5, 2, 3, 2, 37, 3, 2, 19, 2, 13, 3, 2, 5, 2
Offset: 1
Keywords
Examples
. k | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . | 1 2 3 2*2 5 2*3 7 2*2*2 3*3 2*5 11 2*2*3 13 2*7 3*5 2*2*2*2 17 . ----+------------------------------------------------------------------- . a(n)| 1 2 3 2 5 2 3 2 7 2 3 2 5 3 2 11 2 3 2 13 2 7 2 5 3 2 17 2 3 2 ..
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a265111 n = a265111_list !! (n-1) a265111_list = 1 : f 1 [] 0 1 where f u [] w x = f 1 (reverse $ a027746_row' (u * x)) w (x + 1) f u (v:vs) w x | v == w = f (u * v) vs w x | otherwise = v : f u vs v x