cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175943 Partial products of A027746.

Original entry on oeis.org

1, 2, 6, 12, 24, 120, 240, 720, 5040, 10080, 20160, 40320, 120960, 362880, 725760, 3628800, 39916800, 79833600, 159667200, 479001600, 6227020800, 12454041600, 87178291200, 261534873600, 1307674368000, 2615348736000, 5230697472000
Offset: 1

Views

Author

Lior Manor, Oct 27 2010

Keywords

Comments

a(n) <= A265125(n), a(n) < A265125(n) for n > 10. - Reinhard Zumkeller, Dec 02 2015

Crossrefs

n! (A000142) is a subsequence.
Cf. A027746.
Cf. A265125.

Programs

  • Haskell
    a175943 n = a175943_list !! (n-1)
    a175943_list = scanl1 (*) $ concat a027746_tabf
    -- Reinhard Zumkeller, Dec 02 2015
  • PARI
    print1(t=1); for(n=2, 10, f=factor(n); for(i=1, #f[,1], for(j=1,f[i,2], print1(", "t*=f[i,1])))) \\ Charles R Greathouse IV, Sep 12 2012
    

Formula

a(n) is approximately (n / (e log log n))^(n/log log n). - Charles R Greathouse IV, Sep 12 2012

A265111 A rearrangement of the terms of A027746 (seen as flat list) such that adjacent terms are distinct.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 3, 2, 11, 2, 3, 2, 13, 2, 7, 2, 5, 3, 2, 17, 2, 3, 2, 19, 3, 2, 5, 2, 7, 3, 2, 11, 2, 23, 2, 3, 2, 5, 2, 13, 5, 2, 3, 2, 7, 3, 2, 29, 3, 2, 5, 3, 2, 31, 2, 11, 3, 2, 17, 2, 7, 5, 2, 3, 2, 37, 3, 2, 19, 2, 13, 3, 2, 5, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 01 2015

Keywords

Examples

			.  k  | 1 2 3 4   5 6   7 8     9   10   11 12     13 14  15  16       17
.     | 1 2 3 2*2 5 2*3 7 2*2*2 3*3 2*5  11 2*2*3  13 2*7 3*5 2*2*2*2  17
. ----+-------------------------------------------------------------------
. a(n)| 1 2 3 2 5 2 3 2 7 2 3 2 5 3 2 11 2  3 2 13 2  7 2 5 3 2 17 2 3 2 ..
		

Crossrefs

Cf. A027746, A265125 (partial products).

Programs

  • Haskell
    a265111 n = a265111_list !! (n-1)
    a265111_list = 1 : f 1 [] 0 1 where
       f u [] w x = f 1 (reverse $ a027746_row' (u * x)) w (x + 1)
       f u (v:vs) w x | v == w    = f (u * v) vs w x
                      | otherwise = v : f u vs v x
Showing 1-2 of 2 results.