A265131 Decimal expansion of positive x satisfying x^(x^x) = LambertW(1).
4, 4, 3, 3, 4, 4, 8, 8, 7, 3, 5, 7, 9, 1, 5, 0, 7, 4, 1, 5, 9, 8, 0, 0, 2, 7, 9, 3, 7, 8, 8, 6, 8, 8, 6, 0, 1, 2, 2, 5, 4, 1, 3, 9, 6, 5, 2, 2, 2, 2, 9, 2, 1, 4, 9, 5, 7, 7, 1, 3, 5, 9, 5, 4, 0, 8, 8, 4, 9, 4, 5, 4, 8, 8, 1, 8, 6, 0, 0, 2, 4, 6, 5, 9, 7, 8, 8, 6, 7, 6, 8, 7, 9, 2, 2, 8, 4, 9, 2, 5, 1, 9, 9, 4, 1, 5, 3, 0, 0, 1, 1, 9, 8, 1
Offset: 0
Examples
0.44334488735791507415980027937886886012254139652223...
Links
- Wikipedia, Lambert W function
- Wikipedia, Omega constant
Programs
-
Mathematica
RealDigits[x/.FindRoot[x^(x^x)==ProductLog[1],{x,1},WorkingPrecision-> 120]][[1]] (* Harvey P. Dale, Jul 19 2020 *)
-
PARI
default(realprecision,2000);solve(x=0.001,3,x^(x^x)-lambertw(1))