A265146
Triangle T(n,k) in which n-th row lists the parts i_1=1, 1<=k<=A001222(n).
1, 2, 1, 2, 3, 1, 3, 4, 1, 2, 3, 2, 3, 1, 4, 5, 1, 2, 4, 6, 1, 5, 2, 4, 1, 2, 3, 4, 7, 1, 3, 4, 8, 1, 2, 5, 2, 5, 1, 6, 9, 1, 2, 3, 5, 3, 4, 1, 7, 2, 3, 4, 1, 2, 6, 10, 1, 3, 5, 11, 1, 2, 3, 4, 5, 2, 6, 1, 8, 3, 5, 1, 2, 4, 5, 12, 1, 9, 2, 7, 1, 2, 3, 6, 13, 1
Offset: 1
Examples
n = 12 = 2*2*3 = prime(1)*prime(1)*prime(2) encodes strict partition [1,2,4]. Triangle T(n,k) begins: 01 : ; 02 : 1; 03 : 2; 04 : 1, 2; 05 : 3; 06 : 1, 3; 07 : 4; 08 : 1, 2, 3; 09 : 2, 3; 10 : 1, 4; 11 : 5; 12 : 1, 2, 4; 13 : 6; 14 : 1, 5; 15 : 2, 4; 16 : 1, 2, 3, 4;
Links
- Alois P. Heinz, Rows n = 1..1000, flattened
Crossrefs
Programs
-
Maple
T:= n-> ((l-> seq(l[j]+j-1, j=1..nops(l)))(sort([seq( numtheory[pi](i[1])$i[2], i=ifactors(n)[2])]))): seq(T(n), n=1..100);
-
Mathematica
T[n_] := Function[l, Table[l[[j]]+j-1, {j, 1, Length[l]}]][Sort[ Flatten[ Table[ Array[ PrimePi[i[[1]]]&, i[[2]]], {i, FactorInteger[n]}]]]]; Table[T[n], {n, 1, 100}] // Flatten // Rest (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
Formula
T(prime(n),1) = n.
Comments